Contents

1 Introduction ... 1
1.1 The Notion Material ... 1
1.2 The Notion Metal .. 2
1.3 Models and Experiments ... 3
1.4 Bridging Length Scales .. 4
1.5 Understanding of Nature, the Role of Science:
 Magic, Discovery and Models ... 5

2 Electronic Structure of the Atom; the Periodic Table 9
2.1 Protons, Neutrons and Electrons 9
2.2 Rutherford’s Model (1911) ... 9
2.3 Bohr’s Model (1913) .. 9
2.4 The Wave or Quantum-Mechanical Model
 (Heisenberg/Schrödinger, 1926); Quantum Numbers 12
Intermezzo: A “Derivation” of the Uncertainty Relation;
 Diffraction of Moving Particles at a Slit 14
2.4.1 The Probability Amplitude 16
2.4.2 Characterizing the Possible Energy States;
 the Quantum Numbers ... 17
2.5 The Pauli Exclusion Principle and the “Aufbau Prinzip” 20
Intermezzo: The Discoverers of the Periodic System;
 A First Example of a “Priority Battle” 26
Epilogue: The Extent of the Periodic Table 27
2.6 The Shape of the Probability Density Distribution
 for the Electron .. 31
References ... 36

3 Chemical Bonding in Solids; with Excursions to Material Properties 37
3.1 Attractive and Repulsive Forces;
 Thermal Expansion and Elastic Constants 37
Intermezzo: The Linear Coefficient of Thermal Expansion
 of Large and Small Crystals ... 40
3.2 Remarks on Model Types of Bonding 43
3.3 Ionic Bonding; Lattice Energy and the Madelung Factor 44
3.4 Covalent Bonding ... 51
3.5 Metal Bonding .. 57
5 The Crystal Imperfection; Lattice Defects
5.1 Point Defects (Zero-Dimensional):
Thermal and Constitutional Vacancies;
Interstitial, Substitutional and Antistructure Atoms;
Schottky and Frenkel Defects
5.2 Line Defects (One-Dimensional):
Edge and Screw Dislocations
5.2.1 The Edge Dislocation
5.2.2 The Screw Dislocation
5.2.3 Dislocation Line and Burgers Vector;
Dislocation Density
Intermezzo: A Historical Note About the Burgers Vector
5.2.4 Strain Energy of a Dislocation
5.2.5 Glide of Dislocations; Slip Systems
Intermezzo: The Peierls Stress
5.2.6 Dislocation Production: Frank–Read Source,
Cross-Slip and Vacancy Condensation
5.2.7 Climb of Dislocations
5.2.8 Partial and Sessile Dislocations
5.3 Planar Defects (Two-Dimensional):
Grain Boundaries, Twin Boundaries,
Stacking Faults and Antiphase Boundaries;
Coherent and Incoherent Interfaces
Intermezzo: Coherent and Incoherent Interfaces Versus
Coherent and Incoherent Diffraction
5.4 Volume Defects (Three-Dimensional): Second-Phase
Particles and Pores
References

6 Analysis of the Microstructure;
Analysis of Lattice Imperfections:
Light and Electron Microscopical and X-Ray Diffraction Methods
6.1 The Lens
6.1.1 The Paraxial Approximation
6.1.2 The Compound Lens
6.2 Image Formation
6.3 The (Reflected) Light Optical Microscope
6.3.1 The Magnifier (“Loupe”)
6.3.2 The Compound Microscope
6.4 Köhler Illumination
6.5 Resolving Power
6.5.1 Minimal Image Construction
6.5.2 Maximal Magnification
6.6 Bright and Dark Field and Other Imaging Techniques
by Light Microscopy
6.7 Transmission Electron Microscopy
6.7.1 Basic Constitution and Action of the TEM:
Imaging and Diffraction Modes
6.7.2 The Diffraction Pattern; the Zone Law
References
9.6.7 The Activation Energies for Nucleation and Growth 438
9.6.8 Extended Volume and Extended Transformed Fraction 439
9.6.9 Modes of Impingement 442
9.6.10 The Transformed Fraction 444
9.6.11 The Classical and Generalized Johnson–Mehl–Avrami Equation; the “Additivity Rule” Revisited 445
9.6.12 The Effective Activation Energy 447
9.6.13 Experimental Determination of the Degree of Transformation; Dilatometry and Calorimetry 448
9.6.14 Fitting of Kinetic Models 451
9.6.15 Direct Determination of the Effective Activation Energy and the Growth Exponent 453
9.7 The Coupling of Thermodynamics to Kinetics 459
References 460

10 Recovery, Recrystallization and Grain Growth 463
10.1 Recovery 463
10.1.1 Dislocation Annihilation and Rearrangement 465
10.1.2 Kinetics of Recovery 469
10.2 Recrystallization 470
10.2.1 “Nucleation” of Recrystallization 471
Intermezzo: The History of an Idea; the Subgrain as Origin of Recrystallization 475
10.2.2 Kinetics of Recrystallization 476
10.3 Grain Growth 477
10.3.1 The Grain-Boundary Network; on Grain-Boundary/Interfacial Energy and Tension 478
Intermezzo: Interface Stabilized Microstructures 483
10.3.2 Grain-Boundary Curvature-Driven Growth 484
10.3.3 Kinetics of Grain Growth; Inhibition of Grain Growth 487
10.3.4 Abnormal Grain Growth 491
10.3.5 Particle Coarsening; Ostwald Ripening 493
References 495

11 Mechanical Strength of Materials 497
11.1 Elastic Versus Plastic Deformation; Ductile and Brittle Materials 498
11.2 Basic Modes of Uniaxial Deformation; Concepts of Stress and Strain; Uniaxial Elastic Deformation Laws 499
Intermezzo: Short History of the Poisson Constant 502
Intermezzo: Negative Poisson Constant 503
11.3 Elastically Isotropic and Anisotropic Materials 504
11.4 Elastic Deformation Upon Three-Axial and Biaxial Loading 507
11.5 Elastic Strain Energy 512
11.6 Rubber Elasticity; Elastomeric Behaviour 514
11.7 Viscoelasticity/Anelasticity; Mechanical Hysteresis 516
11.8 Plastic Deformation Characteristics 519
11.9 The Tensile Stress–Strain Curve; True Stress and True Strain . 521

11.9.1 Strain and Strain Rate Due to Dislocation Movement 525
11.9.2 The Yield Drop Phenomenon; Cottrell-Bilby Atmospheres 526
11.9.3 Shear Yielding and Craze Yielding 531
11.10 Yielding Criteria in Cases of Two- and Three-Axial Loading 532

Intermezzo: Application of the von Mises Criterion to Predict the Location of Failure in Ball Bearings 533
11.11 Critical Resolved Shear Stress; the Plastic Deformation of Single Crystals ... 536
11.12 Plastic Deformation of Polycrystals 539
11.13 Hardness Parameters; Macroscopic, Microscopic and Nanoscopic ... 540

Intermezzo: The Hardest Materials 542
Intermezzo: Combined Nanoindentation and Scanning Probe Microscopy .. 544

Intermezzo: Hardness-Depth Profiling on Nanoscale 548
11.14 Strengthening, Hardening Mechanisms (of Metals in Particular) 550

11.14.1 Strain Hardening (Work Hardening) 550
11.14.2 Grain Size; the Hall–Petch Relation 551
11.14.3 Solid Solution Hardening 554
11.14.4 Precipitation/Dispersion Strengthening 555

11.15 Failure by Fracture; Crack Propagation 557
11.16 Failure by Creep ... 562

11.16.1 Superplasticity ... 566
11.17 Failure by Fatigue .. 567
11.18 Residual, Internal Stresses 573

Epilogue: The Essence of Materials Science; Optimizing the Fatigue Strength of Ferritic Steels by Nitriding . 576

References .. 580

Index .. 583
Fundamentals of Materials Science
The Microstructure-Property Relationship Using Metals as Model Systems
Mittemeijer, E.J.
2011, XXI, 594 p., Hardcover
ISBN: 978-3-642-10499-2