Contents

Part I Whole-Plant Regulation

1 Oxygen Transport in Waterlogged Plants 3
 Lars H. Wegner
 1.1 Introduction .. 4
 1.2 O₂ Transport in Plants: Some Basic Physics, and Modelling
 of O₂ Diffusion ... 5
 1.3 A Survey of Methods to Study O₂ Transport and Related
 Parameters in Higher Plants ... 7
 1.4 Anatomical Adaptations to Flooding Stress: Barriers
 to Radial Oxygen Loss .. 10
 1.5 Anatomical Adaptations to Flooding Stress:
 Formation of Aerenchyma ... 11
 1.6 Mechanisms of O₂ Transport in Plants 13
 1.7 O₂ Transport in Plants: Ecological Implications 18
 1.8 Open Questions and Directions of Further Research 18
 References ... 19

2 Waterlogging and Plant Nutrient Uptake 23
 J. Theo M. Elzenga and Hans van Veen
 2.1 Introduction ... 23
 2.2 Effects of Hypoxia on Nutrient Uptake 26
 2.2.1 Physiological Effects of Hypoxia Change Root Elongation
 Rate, \(k \), and Maximal Nutrient Uptake Rate, \(I_{\text{max}} \) 26
 2.2.2 Waterlogging Leads to Changes in the Availability, \(C_{\text{li}} \),
 and the Effective Diffusion Coefficient, \(D_{\text{e}} \), of Some of the
 Nutrients in the Soil ... 28
 2.2.3 In Waterlogged Conditions, Some Plant Species Show
 More Root Hair Development, Longer and Thinner

References
3 Strategies for Adaptation to Waterlogging and Hypoxia in Nitrogen Fixing Nodules of Legumes

Daniel M. Roberts, Won Gyu Choi, and Jin Ha Hwang

3.1 Introduction: The Oxygen Diffusion Barrier in Nodules
3.1.1 Nodule Morphology and the Gas Diffusion Barrier
3.1.2 Modulation of the Gas Diffusion Barrier
3.1.3 Control of the Gas Diffusion Barrier in Response to Sub-Ambient O2 and Flooding
3.1.4 Mechanism of Regulation of the Gas Diffusion Barrier in Response to pO2

3.2 Developmental and Morphological Adaptations of Nitrogen-Fixing Nodules to Low Oxygen Stress
3.2.1 Secondary Aerenchyma Formation
3.2.2 The Inner Cortex and Infected Zone
3.2.3 Influence of Adaptive Changes on Nitrogen Fixation Under Altered Rhizosphere pO2 Conditions

3.3 Strategies of Adaptation: Flood-Tolerant Legumes and Oxygen Diffusion
3.3.1 Tropical Wetland Legumes
3.3.2 Lotus uliginosus: A Temperate Wetland Legume

3.4 Strategies of Adaptation: Alternate Nodulation Pathways for Flooding Tolerant Legumes
3.4.1 Intercellular-Based Mechanism of Nodulation: The Lateral Root Boundary Pathway
3.4.2 Sesbania rostrata: A Model Legume for Aquatic Nodulation

3.5 Summary and Concluding Remarks

References

4 Oxygen Transport in the Sapwood of Trees
Sergio Mugnai and Stefano Mancuso

4.1 Brief Anatomy of a Woody Stem
4.2 Atmosphere Inside a Stem: Gas Composition and its Effects on Respiration
4.3 Gas Transport and Diffusion
Contents

4.4 Radial and Axial Oxygen Transport to Sapwood 68
4.5 Sapwood Respiration ... 70
References .. 73

Part II Intracellular Signalling

5 pH Signaling During Anoxia .. 79
Hubert H. Felle
5.1 Introduction .. 79
5.2 pH, Signal and Regulator ... 81
 5.2.1 pH as Systemic Signal ... 82
 5.2.2 The Nature of pH Transmission 83
 5.2.3 What is the Information? .. 83
5.3 Anoxic Energy Crisis and pH Regulation 85
 5.3.1 The Davis-Roberts-Hypothesis: Aspects of pH Signaling 85
 5.3.2 Cytoplasmic Acidification, ATP and Membrane Potential .. 86
 5.3.3 Cytoplasmic pH (Change), An Error Signal? 87
5.4 pH Interactions Between the (Major) Compartments
 During Anoxia ... 88
 5.4.1 The pH Trans-Tonoplast pH Gradient 88
 5.4.2 Cytoplasm and Apoplast .. 90
 5.4.3 The Apoplast Under Anoxia ... 90
5.5 Anoxia Tolerance and pH ... 91
 5.5.1 pH as a Stress Signal – Avoidance of Cytoplasmic Acidosis .. 92
5.6 pH as Signal for Gene Activation .. 93
5.7 pH Signaling and Oxygen Sensing ... 94
5.8 Conclusions ... 94
References .. 95

6 Programmed Cell Death and Aerenchyma Formation Under
 Hypoxia .. 99
Kurt V. Fagerstedt
6.1 Introduction .. 100
6.2 Description of Aerenchyma Formation: Induced and
 Constitutive ... 102
6.3 Evidence for PCD During Lysigenous Aerenchyma Formation ... 103
6.4 Description of the sequence of events leading to induced
 lysigenous aerenchyma formation ... 104
 6.4.1 Stimuli for Lysigenous Aerenchyma Development
 (Low Oxygen, Cytosolic Free Calcium, Ethylene,
 P, N, and S Starvation, and Mechanical Impedance) 105
 6.4.2 PCD and the Clearing of the Cell Debris 110
6.4.3 What Determines the Architecture of Aerenchyma? – Targeting and Restricting PCD 112
6.5 Future Prospects ... 113
References ... 113

7 Oxygen Deprivation, Metabolic Adaptations and Oxidative Stress .. 119
Olga Blokhina and Kurt V. Fagerstedt
7.1 Introduction .. 120
7.2 Anoxia: Metabolic Events Relevant for ROS Formation 121
 7.2.1 “Classic” Metabolic Changes Under Oxygen Deprivation Related to ROS Formation 121
 7.2.2 Changes in Lipid Composition and Role of Free Fatty Acids Under Stress 124
 7.2.3 Modification of Lipids: LP ... 125
7.3 ROS and RNS Chemistry Overview and Sources of Formation Under Lack of Oxygen 126
 7.3.1 Reactive Oxygen Species ... 126
 7.3.2 Reactive Nitrogen Species .. 127
 7.3.3 Plant Mitochondria as ROS Producers: Relevance for Oxygen Deprivation Stress 129
7.4 O₂ Fluxes in Tissues and Factors Affecting O₂ Concentration In Vivo ... 131
7.5 Microarray Experiments in the Study of Hypoxia-Associated Oxidative Stress ... 132
7.6 Update on Antioxidant Protection 133
 7.6.1 Low Molecular Weight Antioxidants 134
 7.6.2 Enzymes Participating in Quenching ROS 136
7.7 Concluding Remarks ... 138
References ... 139

Part III Membrane Transporters in Waterlogging Tolerance

8 Root Water Transport Under Waterlogged Conditions and the Roles of Aquaporins ... 151
Helen Bramley and Steve Tyerman
8.1 Introduction .. 151
8.2 Variable Root Hydraulic Conductance (L_r) 152
8.3 Changes in Root Morphology and Anatomy 153
 8.3.1 Root Death and Adventitious Roots 153
 8.3.2 Barriers to Radial Flow .. 154
 8.3.3 Varying the Root or Root Region Involved in Water Uptake ... 157
8.4 Volatile and Toxic Compounds in Anaerobic Soils 158
8.5 Water Permeability of Root Cells and Aquaporins 158
 8.5.1 Plant Aquaporins ... 159
 8.5.2 Responses at the Cell Level Affecting Water Permeability and Potential Mechanisms 161
 8.5.3 Other Changes Under Oxygen Deficiency that Could Affect Water Transport .. 169
 8.5.4 Transport of Other Molecules Besides Water Through MIPs Relevant to Flooding 170
8.6 Signalling .. 171
8.7 Conclusion and Future Perspectives 172
References ... 173

9 Root Oxygen Deprivation and Leaf Biochemistry in Trees 181
Laura Arru and Silvia Fornaciari
 9.1 Introduction .. 182
 9.2 Root O₂ Deprivation .. 183
 9.2.1 Root O₂ Deprivation: Effects on Leaves 185
 9.3 The Role of ADH ... 185
 9.4 Carbon Recovery ... 186
 9.5 Differential mRNA Translation 188
 9.6 Effects on Cell Metabolism ... 189
 9.7 Conclusions ... 191
References ... 192

10 Membrane Transporters and Waterlogging Tolerance 197
Jiayin Pang and Sergey Shabala
 10.1 Introduction .. 198
 10.2 Waterlogging and Plant Nutrient Acquisition 198
 10.2.1 Root Ion Uptake ... 198
 10.2.2 Transport Between Roots and Shoots 199
 10.2.3 Ionic Mechanisms Mediating Xylem Loading 200
 10.2.4 Control of Xylem Ion Loading Under Hypoxia 201
 10.3 Oxygen Sensing in Mammalian Systems 201
 10.3.1 Diversity and Functions of Ion Channels as Oxygen Sensors ... 201
 10.3.2 Mechanisms of Hypoxic Channel Inhibition 203
 10.3.3 The Molecular Mechanisms of Oxygen Sensing in Plant Systems Remain Elusive 203
 10.4 Impact of Anoxia and Hypoxia on Membrane Transport Activity in Plant Cells .. 204
 10.4.1 Oxygen Deficiency and Cell Energy Balance 204
 10.4.2 H⁺ and Ca²⁺ Pumps 204
 10.4.3 Ca²⁺-Permeable Channels 205
 10.4.4 K⁺-Permeable Channels 206
10.5 Secondary Metabolites Toxicity and Membrane Transport Activity in Plant Cells .. 206
 10.5.1 Waterlogging and Production of Secondary Metabolites ... 206
 10.5.2 Secondary Metabolite Production and Plant Nutrient Acquisition .. 207
10.6 Secondary Metabolites and Activity of Key Membrane Transporters ... 208
 10.6.1 Pumps ... 208
 10.6.2 Carriers ... 209
 10.6.3 Channels ... 209
10.7 Breeding for Waterlogging Tolerance by Targeting Key Membrane Transporters ... 211
 10.7.1 General Trends in Breeding Plants for Waterlogging Tolerance .. 211
 10.7.2 Improving Membrane Transporters Efficiency Under Hypoxic Conditions 211
 10.7.3 Reducing Sensitivity to Toxic Secondary Metabolites ... 212
References ... 213

11 Ion Transport in Aquatic Plants ... 221
Olga Babourina and Zed Rengel
 11.1 Introduction ... 221
 11.2 Morphological and Physiological Adaptations of Aquatic Plants ... 222
 11.3 Ion Transport .. 224
 11.3.1 Cation Transport Systems 228
 11.3.2 Anion Transport Systems .. 230
 11.4 Root Versus Leaf Uptake .. 230
 11.5 Molecular Characterisation of Transporter Genes ... 232
 11.6 The Relevance of Aquatic Plants to Terrestrial Plants in Regards to Waterlogging and Inundation Stresses 233
 11.7 Conclusions .. 233
References ... 234

Part IV Agronomical and Environmental Aspects

12 Genetic Variability and Determinism of Adaptation of Plants to Soil Waterlogging ... 241
Julien Parelle, Erwin Dreyer, and Oliver Brendel
 12.1 Introduction ... 242
 12.2 Diversity Among Populations: Adaptation to Water-Logged Soils? ... 246
 12.3 Genetic Control of Traits Related to Hypoxia Tolerance .. 249
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4</td>
<td>Genetic Determinism of Tolerance to Waterlogging and Identification of the Involved Genome Regions</td>
<td>250</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Methodology of the Detection of QTL for Hypoxia Tolerance: Caution and Strategies</td>
<td>251</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Major Loci Detected for Hypoxia Tolerance</td>
<td>256</td>
</tr>
<tr>
<td>12.5</td>
<td>Conclusions</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>260</td>
</tr>
</tbody>
</table>

13	Improvement of Plant Waterlogging Tolerance	267
	Meixue Zhou	
13.1	Introduction	267
13.2	Genetic Resources of the Tolerance	268
13.3	Selection Criteria	271
13.4	Genetic Studies on Waterlogging Tolerance	273
13.5	Marker-Assisted Selection	275
13.5.1	QTL Controlling Waterlogging Tolerance	275
13.5.2	Accurate Phenotyping is Crucial in Identifying QTLs for Waterlogging Tolerance	278
	References	281

| Index | | 287 |
Waterlogging Signalling and Tolerance in Plants
Mancuso, S.; Shabala, S. (Eds.)
2010, XIX, 294 p., Hardcover
ISBN: 978-3-642-10304-9