Contents

Preface .. vii

List of Special Symbols ... xv

1 Introduction ... 1
 1.1 Symmetric Functions .. 1
 1.2 Essential Basic Notation ... 3
 1.3 The Poisson Summation Formula 4
 1.4 Euler–Maclaurin Summation Formulae 5
 1.5 Meromorphic Properties of Mellin Transforms 6

2 Infinite Products and Zeta-Regularization 9
 2.1 Informal Discussion .. 9
 2.2 A Class of Eligible Sequences \{x_k\} 12
 2.3 Meromorphic Continuation of the Zeta Function 12
 2.4 The Generalized Zeta Function 14
 2.5 The Zeta-Regularized Product 15
 2.6 Practical Results .. 18
 2.6.1 Zeta-Regularization: a Zeta-Free Recipe 18
 2.6.2 A Subclass: “Theta-Eligible” Sequences 19
 2.6.3 Explicit Properties of the Generalized Zeta Function 21

3 The Riemann Zeta Function \(\zeta(x): a Primer\) 23
 3.1 Definition and Immediate Properties 23
 3.2 The Euler Infinite Product 24
 3.3 The Stieltjes and Cumulant Expansions 24
 3.4 The Functional Equation and Completed Zeta Function \(\Xi(x)\) .. 25
 3.5 The Dirichlet Beta Function \(\beta(x)\) 28
 3.6 The Hurwitz Zeta Function \(\zeta(x, w)\) 28
4 Riemann Zeros and Factorizations of the Zeta Function .. 33
 4.1 Growth Properties of $\zeta(x)$ and $\Xi(x)$... 33
 4.2 The Riemann Zeros (Basic Features) .. 34
 4.3 Hadamard Products for $\Xi(x)$.. 35
 4.4 Basic Bounds on ζ'/ζ .. 36
 4.5 The (Asymptotic) Riemann–von Mangoldt Formula 39

5 Superzeta Functions: an Overview ... 41
 5.1 First Kind (\mathcal{Z}) ... 42
 5.2 Second Kind (\mathcal{Z}) ... 42
 5.3 Third Kind (\mathcal{Z}) ... 44
 5.4 Further Generalizations (Lerch, Cramér, ...) 44
 5.5 Other Studies on Superzeta Functions ... 45

6 Explicit Formulae ... 49
 6.1 The Guinand–Weil Explicit Formula ... 49
 6.2 Derivation of the Explicit Formula ... 50
 6.3 Pattern-Matching with the Selberg Trace Formula 52
 6.3.1 The Selberg Trace Formula (Compact Surface Case) 52
 6.3.2 Comparison with the Explicit Formula 53
 6.4 Explicit Formulae for the Superzeta Functions 54
 6.4.1 The Family of the First Kind (\mathcal{Z}) 54
 6.4.2 The Family of the Second Kind (\mathcal{Z}) 56
 6.4.3 Concluding Remarks ... 58

7 The Family of the First Kind $\{\mathcal{Z}(s \mid t)\}$ 59
 7.1 The Basic Analytical Continuation Formula 59
 7.2 Derivations ... 60
 7.2.1 Derivation by Contour Integration 60
 7.2.2 Derivation by Eligibility of the Riemann Zeros 62
 7.3 Analytic Properties of the Family $\{\mathcal{Z}(s \mid t)\}$ 64
 7.4 Special Values of $\mathcal{Z}(s \mid t)$ for General t 65
 7.5 Imprints of the Central Symmetry $\rho \leftrightarrow (1 - \rho)$ 67
 7.5.1 $t \leftrightarrow (-t)$ Symmetry at Integer t 67
 7.5.2 Sum Rules at an Arbitrary Fixed t ... 68
 7.6 Special Values of $\mathcal{Z}(s \mid t)$ at $t = 0$ and $\frac{1}{2}$ 69
 7.6.1 The Function $\mathcal{Z}_0(s)$ (the Confluent Case $t = 0$) 69
 7.6.2 The Function $\mathcal{Z}_*(s)$ (the Case $t = \frac{1}{2}$) 70
 7.7 Tables of Formulae for the Special Values of \mathcal{Z} 71
 7.7.1 Function of First Kind for General t 72
 7.7.2 Function of First Kind at $t = 0$ and $\frac{1}{2}$ 73
8 The Family of the Second Kind \(\{ \mathcal{Z}(\sigma \mid t) \} \) .. 75
8.1 The Confluent Case \(\mathcal{Z}(\sigma \mid t = 0) \equiv \mathcal{Z}_0(\sigma) \) 76
8.2 Meromorphic Continuation in \(\sigma \) for General \(t \) 77
8.3 Algebraic Results for \(\mathcal{Z}(\sigma \mid t) \) at General \(t \) 79
8.4 Transcendental Values of \(\mathcal{Z}(\sigma \mid t) \) for General \(t \) 80
8.5 Imprints of the Central Symmetry \(\rho \leftrightarrow (1 - \rho) \) 80
8.6 Results for \(\mathcal{Z}(\sigma \mid t) \) at \(t = 0 \) and \(t = \frac{1}{2} \) 82
 8.6.1 The Function \(\mathcal{Z}_0(s) \) (the Confluent Case \(t = 0 \) 82
 8.6.2 The Function \(\mathcal{Z}_*(s) \) (the Case \(t = \frac{1}{2} \) 82
8.7 Tables of Formulae for the Special Values of \(\mathcal{Z} \) 84
 8.7.1 Function of Second Kind for General \(t \) 84
 8.7.2 Function of Second Kind at \(t = 0 \) and \(t = \frac{1}{2} \) 85

9 The Family of the Third Kind \(\{ \mathcal{Z}(s \mid \tau) \} \) 87

10 Extension to Other Zeta- and \(L \)-Functions 91
 10.1 Admissible Primary Functions \(L(x) \) 92
 10.2 The Three Superzeta Families 93
 10.3 The First Family \(\{ \mathcal{Z} \} \) 94
 10.3.1 The Zeta Function \(\mathcal{Z}(s \mid t) \) over the Trivial Zeros 94
 10.3.2 The Basic Analytical Continuation
 Formula for \(\mathcal{Z} \) .. 95
 10.3.3 Special Values of \(\mathcal{Z}(s \mid t) \) for General \(t \) 96
 10.3.4 Special Values of \(\mathcal{Z}(s \mid t) \) at \(t = 0 \) and \(\frac{1}{2} \) 97
 10.4 The Second Family \(\{ \mathcal{Z} \} \) 98
 10.4.1 The Confluent Case \(\mathcal{Z}(\sigma \mid t = 0) \equiv \mathcal{Z}_0(\sigma) \) 98
 10.4.2 Algebraic Results for \(\mathcal{Z}(\sigma \mid t) \) at General \(t \) 98
 10.4.3 Transcendental Values of \(\mathcal{Z}(\sigma \mid t) \) at General \(t \) .. 99
 10.5 The Third Family \(\{ \mathcal{Z} \} \) 100
 10.6 Special Concrete Examples 101
 10.6.1 \(L \)-Functions of Real Primitive Dirichlet Characters ... 101
 10.6.2 Dedekind Zeta Functions 105
 10.7 Tables of Formulae for the Special Values 108
 10.7.1 For General Primary Functions \(L(x) \) at General \(t \) 109
 10.7.2 Dirichlet-\(L \) Cases, Functions of First Kind
 at \(t = 0 \) and \(\frac{1}{2} \) 110
 10.7.3 Dedekind-\(\zeta \) Cases, Functions of First Kind
 at \(t = 0 \) and \(\frac{1}{2} \) 111

11 Application: an Asymptotic Criterion for the
 Riemann Hypothesis ... 113
 11.1 Introduction to the Result 113
 11.2 Asymptotic Alternative for \(\lambda_n, n \to \infty \) 115
Zeta Functions over Zeros of Zeta Functions
Voros, A.
2010, XVII, 163 p., Softcover
ISBN: 978-3-642-05202-6