Preface

In 1993, from 27 June to 1 July, I gave ten lectures for a CBMS–NSF conference, organized by Maria Schonbek at UCSC,1 Santa Cruz, CA. As I was asked to write lecture notes, I wrote the parts concerning homogenization and compensated compactness in the following years, but I barely started writing the part concerning H-measures.

In the fall of 1997, facing an increase in aggressiveness against me, I decided to put that project on hold, and I devised a new strategy to write lecture notes for the graduate courses that I was going to teach at CMU (\textit{Carnegie Mellon University})2,3 Pittsburgh, PA. After doing so for the courses that I taught in the spring of 1999 and in the spring of 2000, I made the texts available on the web page of CNA (Center for Nonlinear Analysis at CMU).

For the graduate course that I taught in the fall of 2001, I still needed to write the last four lectures, but I also prepared the last version of my CBMS–NSF course, from the summer of 1996, to make it also available on the web page of CNA, so that those who received a copy of various chapters would not be the only ones to know the content of those chapters that I wrote.

This led to a sharp increase of aggressiveness against me, so after putting my project on hold, I learned to live again in a hostile environment.

1 Maria Elena Schonbek, Argentinean-born mathematician. She worked at Northwestern University, Evanston, IL, at VPISU (Virginia Polytechnic Institute and State University), Blacksburg, VA, at University of Rhode Island, Kingston, RI, at Duke University, Durham, NC, and she now works at UCSC (University of California at Santa Cruz), Santa Cruz, CA.

2 Andrew Carnegie, Scottish-born businessman and philanthropist, 1835–1919. Besides endowing a technical school in Pittsburgh, PA, which became Carnegie Tech (Carnegie Institute of Technology) and then CMU (\textit{Carnegie Mellon University}) after it merged in 1967 with the Mellon Institute of Industrial Research, he funded about three thousand public libraries, and those in United States are named \textit{Carnegie libraries}.

3 Andrew William Mellon, American financier and philanthropist, 1855–1937. He founded the Mellon Institute of Industrial Research in Pittsburgh, PA, which merged in 1967 with Carnegie Tech (Carnegie Institute of Technology) to form CMU (\textit{Carnegie Mellon University}).
In the summer of 2002, I started revising my first two lecture notes by adding information about the persons whom I mention in the text, and for doing this I used footnotes, despite a warning by KNUTH [45] that footnotes tend to be distracting, but as he added “Yet Gibbon’s Decline and Fall would not have been the same without footnotes,” I decided not to restrain myself. I cannot say if my excessive use of footnotes resembles that of GIBBON, as I have not yet read The History of the Decline and Fall of the Roman Empire [34], but I wonder if the recent organized attacks on the western academic systems are following some of the reasons that GIBBON proposed for explaining the decline and the collapse of the mighty Roman empire.

Where should I publish my lecture notes once written? I found the answer in October 2002 at a conference at Accademia dei Lincei in Roma (Rome), Italy, when my good friends Carlo SBORDONE and Franco BREZZI mentioned their plan6,7 to have a series of lecture notes at UMI (Unione Matematica Italiana), published by Springer.8

I submitted my first lecture notes for publication in the summer of 2004, but I took a long time before making the requested corrections, and they appeared only in August 2006 as volume 1 of the UMI Lecture Notes series [116], An Introduction to Navier–Stokes Equation and Oceanography.9,10

I submitted my second lecture notes for publication in August 2006, and they appeared in June 2007 as volume 3 of the UMI Lecture Notes series [117], An Introduction to Sobolev Spaces and Interpolation Spaces.11

I submitted my third lecture notes for publication in January 2007 and they appeared in March 2008 as volume 6 of the UMI Lecture Notes series [119], From Hyperbolic Systems to Kinetic Theory, A Personalized Quest.

4 Donald Ervin KNUTH, American mathematician, born in 1938. He worked at Caltech (California Institute of Technology), Pasadena, CA, and at Stanford University, Stanford, CA.
5 Edward GIBBON, English historian, 1817–1877.
6 Carlo SBORDONE, Italian mathematician, born in 1948. He works at Università degli Studi di Napoli Federico II, Napoli (Naples), Italy. He was president of UMI (Unione Matematica Italiana) from 2000 to 2006.
7 Franco BREZZI, Italian mathematician, born in 1945. He works at Università degli Studi di Pavia, Pavia, Italy. He became president of UMI (Unione Matematica Italiana) in 2006.
8 Julius SPRINGER, German publisher, 1817–1877.
11 Sergei L’vovich SOBOLEV, Russian mathematician, 1908–1989. He worked in Leningrad, in Moscow, and in Novosibirsk, Russia. There is now a Sobolev Institute of Mathematics of the Siberian branch of the Russian Academy of Sciences, Novosibirsk, Russia. I first met Sergei SOBOLEV when I was a student, in Paris in 1969, and conversed with him in French, which he spoke perfectly (all educated Europeans at the beginning of the twentieth century learned French).
In the summer of 2007, it was time for me to think again about my CBMS–NSF course. Because I already wrote lecture notes on how homogenization appears in optimal shape design [111] for lectures given during a CIME–CIM summer school, organized by Arrigo CELLINA and António ORNELAS,12,13 in Tróia, Portugal, in June 1998, I wrote this book in a different way, describing how my ideas in homogenization were introduced during my quest for understanding more about continuum mechanics and physics, so that chapters follow a loose chronological order.

As in my preceding lecture notes, I use footnotes for giving some biographical information about people related to what I mention, and in the text I use the first name of those whom I met. In my third lecture notes, I started putting at the end of each chapter the additional footnotes that are not directly related to the text but expand on some information found in previous footnotes; in this book, instead of presenting them in the order where the names appeared, I organized the additional footnotes in alphabetical order.

When one misses the footnote containing the information about someone, a chapter of biographical information at the end of the book permits one to find where the desired footnote is.

I may be wrong about some information that I give in footnotes, and I hope to be told about my mistakes, and that is true about everything that I wrote in the book, of course!

I want to thank my good friends Carlo SBORDONE and Franco BREZZI for their support, in general, and for the particular question of the publication of my lecture notes in a series of Unione Matematica Italiana.

I want to thank Carnegie Mellon University for according me a sabbatical period in the fall of 2007, and Politecnico di Milano for its hospitality during that time, at it was of great help for concentrating on my writing programme.

I want to thank Université Pierre et Marie Curie for a 1 month invitation at Laboratoire Jacques-Louis Lions,14,15 in May/June 2008, as it was during

\begin{footnotes}
\footnote{Arrigo CELLINA, Italian mathematician, born in 1941. He works at Università di Milano Bicocca, Milano (Milan), Italy.}
\footnote{António COSTA DE ORNELAS GONÇALVES, Portuguese mathematician, born in 1951. He works in Évora, Portugal.}
\footnote{Pierre CURIE, French physicist, 1859–1906, and his wife Marie SKŁODOWSKA-CURIE, Polish-born physicist, 1867–1934, received the Nobel Prize in Physics in 1903 in recognition of the extraordinary services they have rendered by their joint research on the radiation phenomena discovered by Professor Henri BECQUEREL, jointly with Henri BECQUEREL. Marie SKŁODOWSKA-CURIE also received the Nobel Prize in Chemistry in 1911 in recognition of her services to the advancement of chemistry by the discovery of the elements radium and polonium, by the isolation of radium, and the study of the nature and compounds of this remarkable element. They worked in Paris, France. Université Paris VI, Paris, is named after them, UPMC (Université Pierre et Marie Curie).}
\footnote{Jacques-Louis LIONS, French mathematician, 1928–2001. He received the Japan Prize in 1991. He worked in Nancy and in Paris, France; he held a chair (analyse}
this period that I wrote the last chapters of the book. I want to thank François Murat16 for his hospitality during my visits to Paris for almost 20 years and for his unfailing friendship for almost 40 years.

I could not publish my first three lecture notes and start the preparation of this fourth book without the support of Lucia Ostoni. I want to thank her for much more than providing the warmest possible atmosphere during my stays in Milano, because she gave me the stability that I lacked so much during a large portion of the last 30 years, so that I now feel safer for resuming my research, whose main goal is to give a sounder mathematical foundation to twentieth century continuum mechanics and physics.

Milano, June 2008

Luc Tartar

Correspondant de l’Académie des Sciences, Paris
Membro Straniero dell’Istituto Lombardo Accademia di Scienze e Lettere, Milano
University Professor of Mathematics, Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA

PS: (Pittsburgh, August 2008) Although I finished writing the book at the end of June, while I was in Milano attending the last meeting of Instituto Lombardo before the summer, I still had to check the chapter on notation and to create an index, and while doing that, I realized that I should explain my choices in a better way, in particular the subject of Chap. 1.

My general goal is to understand in a better way the continuum mechanics and the physics of the twentieth century, that is, the questions where small scales appear, plasticity and turbulence on the one hand, atomic physics and phase transitions on the other, and I think that the General Theory of Homogenization (GTH) as I developed it is crucial for starting in the right direction, but as there are a few dogmas to change, if not to discard completely, in continuum mechanics and in physics, I need to explain why the difficulties are similar to those that appeared in religions, where the deadlocks still remain.

16François Murat, French mathematician, born in 1947. He works at CNRS (Centre National de la Recherche Scientifique) and UPMC (Université Pierre et Marie Curie), in LJLL (Laboratoire Jacques-Louis Lions), Paris, France.
Describing my family background and my studies is a way to answer the question that should be asked in the future: among those who realized at the end of the twentieth century that some of the dogmas in continuum mechanics and physics had to be discarded as wrong and counter-productive, what explains how they could start thinking differently? Should I say that I do not know who else but myself fits in this category? I expect that by telling this story, more will be able to follow a path similar to mine in the future, that is, there will be more mathematicians interested in the other sciences than mathematics!

Because I use the words parables and gospels in the first sentence of Chap. 1, some may stop reading the book, but in the second sentence I explain why parables are like general theorems, and by the end of the second footnote at the bottom of the first page, one will already learn that I am no longer a Christian, so that any misunderstanding about my intentions should result from the prejudices of the reader against religions, which is not a scientific attitude, and at the end of the book it should be clear that many “scientists” behaved in the recent past like religious fundamentalists.

What I advocate is for all to use their brain in a critical way!

Additional footnotes: BECQUEREL,17 DUKE,18 Federico II,19 LUCAS H.,20 NOBEL,21 STANFORD,22

Detailed Description of Contents
a.b: refers to Corollary, Definition, Lemma, or Theorem # b in Chap. # a, while (a.b) refers to Eq. # b in Chap. # a.

Chapter 1: Why Do I Write?
 About my sense of duty.

Chapter 2: A Personalized Overview of Homogenization I
 About my understanding of homogenization in the 1970s.

17 Antoine Henri BECQUEREL, French physicist, 1852–1908. He received the Nobel Prize in Physics in 1903, in recognition of the extraordinary services he has rendered by his discovery of spontaneous radioactivity, jointly with Pierre CURIE and Marie SKlodowska-CURIE. He worked in Paris, France.
19 Friedrich VON HOHENSTAUFEN, German king, 1194–1250. Holy Roman Emperor, as Friedrich II, 1220–1250. He founded the first European state university in 1224, in Napoli (Naples), Italy, where he is known as Federico secondo, and Università degli Studi di Napoli is named after him.
21 Alfred Bernhard NOBEL, Swedish industrialist and philanthropist, 1833–1896. He created a fund to be used as awards for people whose work most benefited humanity.
22 Leland STANFORD, American businessman, 1824–1893. Stanford University is named after him (as is the city of Stanford, CA, where it is located).
Chapter 3: A Personalized Overview of Homogenization II

About my understanding of homogenization after 1980.

Chapter 4: An Academic Question of Jacques-Louis Lions

Studying in Paris in the late 1960s, the question of J.-L. Lions (4.1)–(4.3), the counter-example of Murat (4.4)–(4.6); 4.1: the basic one-dimensional homogenization lemma (4.7)–(4.9), a natural relaxation problem (4.10)–(4.14); 4.2: characterization of sequential weak * limits (4.15)–(4.18), around the ideas of L.C. Young.

Chapter 5: A Useful Generalization by François Murat

Research and development, technical ability, a two-dimensional problem (5.1); 5.1: layering in x_1 for the special case in \mathbb{R}^2 (5.2)–(5.4); 5.2: layering in x_1 for the symmetric elliptic case in \mathbb{R}^N (5.5)–(5.12); 5.3: layering in x_1 for the not necessarily symmetric or elliptic case in \mathbb{R}^N (5.13)–(5.16).

Chapter 6: Homogenization of an Elliptic Equation

Distinguishing the G-convergence of Spagnolo, the H-convergence of Murat and myself, and the Γ-convergence of De Giorgi; 6.1: G-convergence (6.5) and (6.6), the work of Spagnolo (6.1)–(6.4) and (6.7)–(6.10), V-ellipticity and norm (6.11); 6.2: abstract weak convergence of $(T^m)^{-1}$ (6.12); 6.3: $\mathcal{M}(\alpha, \beta; \Omega)$ (6.13) and (6.14); 6.4: H-convergence; 6.5: $\mathcal{M}(\alpha, \beta; \Omega)$ is sequentially closed for H-convergence (6.15)–(6.22), computing a convex hull for obtaining bounds (6.32)–(6.29); 6.6: a lower semi-continuity result in the symmetric case (6.30) and (6.31); 6.7: lower and upper bounds in the symmetric case (6.32).

Chapter 7: The Div–Curl Lemma

7.1: A case where coefficients are products (7.1)–(7.3); 7.2: the div–curl lemma (7.4)–(7.8); 7.3: a counter-example for $\int_\omega (E^n, D^n) \, dx$ (7.9)–(7.14), a generalization of Robbin using the Hodge theorem; 7.4: the necessity of (E, D) (7.15)–(7.18), a generalization of Murat to the L^p setting (7.19)–(7.21), a generalization of Hanouzet and Joly, a fake generalization.

Chapter 8: Physical Implications of Homogenization

About conjectures and theorems, my approach to different scales based on weak convergences, what internal energy is, and the defects of the second principle of thermodynamics, homogenization of first-order equations is important for turbulence and quantum mechanics, the nonexistent “particles” of quantum mechanics and the defects of the Boltzmann equation, the div–curl lemma in electrostatics, errors about effective coefficients in the literature, the div–curl lemma in electricity, and in equipartition of energy (8.1)–(8.4).

Chapter 9: A Framework with Differential Forms

9.1: The generalization of Robbin using the Hodge theorem, electrostatics with differential forms (9.1)–(9.5), the Maxwell–Heaviside equation with differential forms (9.6)–(9.20), a question about the Lorentz force and the motion of charged particles (9.21)–(9.23).
Chapter 10: Properties of H-Convergence

The danger of applying a general theory to too many examples, the ability with abstract concepts, my method of oscillating test functions (10.1)–(10.6); 10.1: the uniform bound for A^eff (10.7)–(10.12); 10.2: transposition in H-convergence (10.13)–(10.18); 10.3: independence from boundary conditions (10.19)–(10.21); 10.4: convergence up to the boundary for some variational inequalities (10.22)–(10.35); 10.5: local character of H-convergence (10.36)–(10.42); 10.6: a result of De Giorgi and Spagnolo (10.43)–(10.47); 10.7: preserving order by H-convergence (10.48)–(10.51); a counter-example of Marcellini (10.52)–(10.55); 10.8: perturbation of $\mathcal{M}(\alpha, \beta; \Omega)$ (10.56) and (10.57); 10.9: estimating $||A^\text{eff} - B^\text{eff}||$ for perturbations (10.58)–(10.68); 10.10: C^k and analytic dependence upon a parameter.

Chapter 11: Homogenization of Monotone Operators

An analogue of V-ellipticity for monotone operators (11.1)–(11.3); 11.1: the class $\mathcal{M}on(\alpha, \beta; \Omega)$ (11.4); 11.2: homogenization for $\mathcal{M}on(\alpha, \beta; \Omega)$ (11.5)–(11.17), a nonlinear analogue of symmetry (11.18); 11.3: homogenization of k-monotone and cyclically monotone operators in $\mathcal{M}on(\alpha, \beta; \Omega)$ (11.19)–(11.22); 11.4: an analogue of a result of De Giorgi and Spagnolo (11.23)–(11.34); 11.5: lower and upper bounds (11.35)–(11.42).

Chapter 12: Homogenization of Laminated Materials

12.1: The general one-dimensional case (12.1)–(12.9), an interpretation from electricity, using physical models in mathematics and drawings in geometry; 12.2: an application of the div–curl lemma (12.10); 12.3: sequences not oscillating in (x, e) (12.11) and (12.12), proofs of 12.2 and of 12.3 (12.13)–(12.19), a hyperbolic situation (12.20), my general method for laminated materials (12.21)–(12.33); 12.4: correctors for laminated materials (12.34)–(12.40).

Chapter 13: Correctors in Linear Homogenization

Chapter 14: Correctors in Nonlinear Homogenization

Remarks on nonlinear elasticity; 14.1: the formula for laminated materials in $\mathcal{M}on(\alpha, \beta; \Omega)$ (14.1)–(14.11); 14.2: correctors for laminated materials in $\mathcal{M}on(\alpha, \beta; \Omega)$ (14.12)–(14.15); 14.3: correctors for $\mathcal{M}on(\alpha, \beta; \Omega)$ (14.16)–(14.27); 14.4: weak limits of $|\text{grad}(u_m)|^2$ (14.28)–(14.31), an application (14.32)–(14.35), the formula for laminated materials in nonlinear elasticity (14.36)–(14.40).
Chapter 15: Holes with Dirichlet Conditions
15.1: Homogenization for holes with Dirichlet conditions and data bounded in $L^2(\Omega)$ (15.1)–(15.10); 15.2: constants in the Poincaré inequality (15.11)–(15.13); 15.3: Homogenization for holes with Dirichlet conditions and data bounded in $H^{-1}(\Omega)$ (15.14)–(15.18); 15.4: a lemma involving the volume of the hole in a period cell (15.19)–(15.29); 15.5: the convergence of a rescaled sequence in the periodic case (15.30)–(15.40); 15.6: correctors in the periodic case (15.41)–(15.54), the convergence of the Stokes equation to the Darcy law according to Ené and Sanchez-Palencia.

Chapter 16: Holes with Neumann Conditions
Hypotheses on the holes (16.1)–(16.4); 16.1: using the extensions to prove convergence (16.5)–(16.9); 16.2: passing to the limit in a variational equation (16.10) and (16.11); 16.3: homogenization for holes with Neumann conditions (16.12)–(16.29), remarks on the periodic case (16.30)–(16.33).

Chapter 17: Compensated Compactness
The evolution of the ideas of Murat and myself; 17.1: a necessary condition for sequential weak lower semi-continuity (17.1)–(17.12); 17.2: a necessary condition for sequential weak continuity (17.13) and (17.14); 17.3: quadratic forms satisfying $Q(\lambda) \geq 0$ for all $\lambda \in A$ (17.15)–(17.38); 17.4: quadratic forms satisfying $Q(\lambda) = 0$ for all $\lambda \in A$ (17.39) and (17.40), examples (17.41)–(17.43), the general characteristic set \mathcal{V} (17.44); 17.5: necessary conditions of higher-order (17.45)–(17.50); 17.6: a condition motivated by a result of Šverák (17.51) and (17.52).

Chapter 18: A Lemma for Studying Boundary Layers
The importance of asking questions, setting of the problem asked by J.-L. Lions (18.1)–(18.14); 18.1: my generalization of the Lax–Milgram lemma (18.10)–(18.14), my construction of M (18.15)–(18.18); 18.2: applying my abstract lemma (18.19)–(18.30); 18.3: my more general approach based on the Lax–Milgram lemma (18.31)–(18.45).

Chapter 19: A Model in Hydrodynamics
Explaining my model (19.1) and (19.2); 19.1: homogenization of my model (19.3)–(19.26), the case $\text{div}(w^n) = 0$ (19.27)–(19.29), a hint about H-measures, defects of kinetic theory.

Chapter 20: Problems in Dimension $N = 2$
Characterizing mixtures of two isotropic conductors (20.1)–(20.3), a preceding interaction between mathematics and physics, distinguishing conjectures and theorems, an observation of J. Keller (20.4)–(20.7); 20.1: $\frac{(A^n)^T}{\det(A^n)}$ H-converges to $\frac{(A_{\text{eff}})^T}{\det(A_{\text{eff}})}$ (20.8); 20.2: $\det(A^n) = \kappa$ implies $\det(A_{\text{eff}}) = \kappa$ (20.9); 20.3: $\tau_P(M) = (-c R_{\pi/2} + dM)(a I + b R_{\pi/2} M)^{-1}$ defines a group homomorphism if $\det(P) = ad - bc > 0$ (20.10) and (20.11); 20.4: $\tau_P(A^n)$ H-converges to $\tau_P(A_{\text{eff}})$ (20.12)–(20.18), the Beltrami equation (20.19); 20.5:
writing the Beltrami equation as a system (20.20)–(20.24); 20.6: a character-
ization of symmetric M with $M_{1,1}, M_{2,2} > 0$, $\det(M) = 1$ and $\text{Trace}(M) \geq 2$
(20.25) and (20.26); 20.7: the formula for laminated materials uses an inver-
sion (20.27)–(20.32); 20.8: closed discs inside the closed unit disc are stable
by H-convergence (20.33)–(20.36), the conjecture of Mortola and Steffé.

Chapter 21: Bounds on Effective Coefficients

Using symmetries; 21.1: change of variable (21.1)–(21.6), equations which
are not frame indifferent; 21.2: $B(\theta)$, $H(\theta)$, $K(\theta)$ (21.7)–(21.10), the intuition
about defining $K(\theta)$; 21.3: basic estimates (21.11)–(21.13); 21.4: generating
bounds using correctors (21.14)–(21.23), a choice of functionals based on
compensated compactness (21.24)–(21.27); 21.5: a result in linear algebra
(21.28); 21.6: a general lower bound (21.29)–(21.32); 21.7: a general upper
bound (21.33)–(21.36), more general functionals (21.37)–(21.39); 21.8: mix-
tures of two isotropic conductors (21.40)–(21.48), the conjectured bounds of
Hashin and Shtrikman, a result of Francfort and Murat and myself.

Chapter 22: Functions Attached to Geometries

Some approaches are not homogenization; 22.2: same geometries for two
materials M^1, M^2 and defining $F(\cdot, M^1, M^2)$ (22.1)–(22.5), special cases
(22.6) and (22.7); 22.2: numerical range (22.8); 22.3: its convexity (22.9)–
(22.11); 22.4: the cases of $F(\cdot, M^1, M^2)$ and $(F(\cdot, M^1, M^2))^{-1}$ (22.12)–
(22.14); 22.5: a more precise result (22.15) and (22.16), transposed and
complex conjugate (22.17); 22.6: using order (22.18); 22.7: Pick functions
and Herglotz functions; 22.8: Herglotz functions (22.19)–(22.24); 22.9: Pick
functions (22.25)–(22.29), using the constraints $g(1) = 1$ and $g'(1) = 1 - \theta$
(22.30)–(22.33); 22.10: generalizing 20.1 (22.34); 22.11: $\frac{\rho}{\det(F)}$ for $N = 2$
(22.35) and (22.36), the reiteration formula in the simple case (22.37); 22.12:
the reiteration formula in the general case (22.38)–(22.41), remarks about
percolation.

Chapter 23: Memory Effects

Observations of physical phenomena and conjectures about equations
used as models, why the second principle is wrong, why an experiment of
spectroscopy is related to effective equations with nonlocal effects, a too-
general question (23.1), my simplified model (23.2)–(23.4); 23.1: the Laplace
transform of the kernel (23.5)–(23.7); 23.2: solving (23.5) by convolutions
(23.8)–(23.15), looking in the correct family of equations in the linear case,
my first approach using only convolutions (23.16)–(23.21); 23.3: my solution
using Pick functions (23.22)–(23.25); 23.4: characterizing the Radon measure
defining the kernel (23.26)–(23.31), a possible origin of irreversibility, the
case where the kernel is a finite combination of exponentials (23.32)–(23.35),
a different way to write the effective equation (23.36) and (23.37).

Chapter 24: Other Nonlocal Effects

Time-dependent coefficients and a nonlinear equation (24.1)–(24.4), an
approach by perturbation (24.5)–(24.9); 24.1: the expansion of the kernel
Chapter 25: The Hashin–Shtrikman Construction

25.1: Equivalent media (25.1) and (25.2); 25.2: the Hashin–Shtrikman coated spheres (25.3)–(25.8); 25.3: using a Vitali covering (25.9)–(25.17); 25.4: coated spheres give optimal bounds (25.18)–(25.21); 25.5: $g''(1)$ for binary mixtures (25.22)–(25.24), a remark of Bergman on cubic symmetry; 25.6: optimal values of Pick functions for Taylor expansion at order 2 (25.25)–(25.31), giving the Hashin–Shtrikman bounds in “dimension” d (25.32) and (25.33); 25.7: bounds for a Pick function g when $zg(z^{-1})$ is a Pick function (25.34)–(25.39), a remark of Milton for ternary mixtures; 25.8: a Riccati equation for general coated spheres (25.40)–(25.44), properties of Riccati equations (25.45)–(25.48); 25.9: generalizing the remark of Milton to arbitrary proportions (25.49)–(25.58); 25.10: the optimal radial construction (25.59)–(25.63).

Chapter 26: Confocal Ellipsoids and Spheres

Confocal ellipsoids (26.1); 26.1: derivatives of an implicit function (26.2)–(26.8); 26.2: particular solutions for isotropic materials in the confocal ellipsoids geometry (26.9)–(26.15); 26.3: a Riccati equation for general confocal ellipsoids (26.16)–(26.20); 26.4: its explicit solution for a binary mixture in the coated ellipsoid case (26.21)–(26.25), why I use old methods of explicit solutions, the difficulty of learning some fields of mathematics by lack of scientific behavior of the specialists, some of the useless fashions that I witnessed, the defect of not mentioning the names of those who had the ideas and of advertising things which are wrong; 26.5: the Schulgasser construction for the radial case (26.26)–(26.30); 26.6: extension by Francfort and myself to the confocal ellipsoids case (26.31)–(26.37); 26.7: solving (26.26); 26.8: solving (26.31), (26.38)–(26.40), can the Schulgasser construction improve 25.10? (26.41); 26.9: it does not (26.42)–(26.51), a two-dimensional case of Gutiérrez, Murat, Weiske and myself (26.52)–(26.62); 26.10: a corresponding Riccati equation (26.63) and (26.64), discussion of the result (26.65)–(26.71), a result of Francfort and myself about the natural character of confocal ellipsoids (26.72)–(26.84).

Chapter 27: Laminations Again, and Again

27.1: A formula for laminated materials (27.1); 27.2: a result of Braidy and Pouilloux (27.2)–(27.5), disadvantage of being shown a line of proof, my writing the general formula for laminations as a differential equation (27.6)–(27.13); 27.3: my formula for repeating laminations (27.14)–(27.16); 27.4: identifying a term in (27.14) and (27.17), my use of relaxation techniques for ordinary differential equations (27.18)–(27.20); 27.5: my direct method
Chapter 28: Wave Front Sets, H-Measures

Singular support of L. Schwartz, wave front set of Hörmander (28.1)–(28.6), propagation of microlocal regularity is not propagation of singularities, oscillations, and concentration effects (studied in a microlocal way) are more important in continuum mechanics and physics than singularities, were H-measures known before I introduced them? the intuition about H-measures (28.7)–(28.11), S^{N-1} is a simple way to talk about a quotient space; 28.1: operators M_b and P_a (28.13) and (28.14), using the Plancherel formula (28.15) and (28.16); 28.2: a first commutation lemma (28.17) and (28.18); 28.3: a homogeneous of degree 0; 28.4: $a(s\xi, s^2\tau) = a(\xi, \tau)$ for $s > 0$ (28.19)–(28.25), using results of Coifman, Rochberg, and Weiss; 28.5: existence of scalar H-measures (28.26)–(28.29), vectorial H-measures (28.30), scalar first-order equation (28.31) and (28.32); 28.7: the localization principle (28.33)–(28.38); 28.8: scalar first-order equation (28.39) and (28.40); 28.9: gradients (28.41)–(28.43); 28.10: wave equation (28.44)–(28.48); 28.11: compensated compactness with variable coefficients (28.49)–(28.53); 28.12: symbols (28.54) and (28.55), examples (28.56)–(28.58); 28.13: symbol of a product (28.59); 28.14: weak \star limit of $S(U_m S_2 U_m)$ (28.60), periodically modulated sequences (28.61) and (28.62); 28.15: the H-measure it defines (28.63)–(28.66); 28.16: the H-measure for a concentration effect at a point (28.67)–(28.69); 28.18: the necessity of some convergences in $H^{-1}_{loc}(\Omega)$ strong (28.70)–(28.73).

Chapter 29: Small-Amplitude Homogenization

Two approximations from Landau and Lifshitz (29.1) and (29.2), my interpretation using small-amplitude homogenization (29.3)–(29.11); 29.1: the correction in γ^2 uses H-measures (29.12)–(29.26), the injectivity of a mapping, my model of Chap. 19 (29.27) and (29.28); 29.2: expressing M^{eff} with H-measures (29.29)–(29.38); 29.3: density in x of the projection of H-measures for sequences in L^p (29.39) and (29.40); 29.4: application to the Taylor expansion of $F(\cdot, M^1, M^2)$ on the diagonal (29.41) and (29.42); 29.5: H-measures associated to characteristic functions (29.43) and (29.44).

Chapter 30: H-Measures and Bounds on Effective Coefficients

Description of the general method (30.1)–(30.12) and (30.13)–(30.17); 30.1: notation $\langle \mu, Q(x, \xi, U) \rangle$; 30.2: a lower bound (30.18)–(30.24); 30.3: a consequence (30.25)–(30.28), the case of binary mixtures (30.29) and (30.30); 30.4: an upper bound (30.31)–(30.43); 30.5: a consequence (30.44)–(30.47), the case of binary mixtures (30.48) and (30.49).

Chapter 31: H-Measures and Propagation Effects

How conserved quantities hide at mesoscopic level, an error of thermodynamics, how waves carry conserved quantities around; 31.1: a second commutation lemma (31.1)–(31.8); 31.2: the Poisson bracket (31.9); 31.3: the
second commutation lemma with standard operators (31.10), an improved regularity hypothesis uses a result of Calderón, differences between localization and propagation (31.11)–(31.14); 31.4: the scalar first-order hyperbolic case (31.15)–(31.27), how to generalize the result to more general systems (31.28)–(31.36); 31.5: the scalar wave equation (31.37)–(31.48), differences between propagation of H-measures and geometrical optics, a question of smoothness of the coefficients (31.49), the question of initial data, transformation of H-measures under local diffeomorphisms (31.50)–(31.53).

Chapter 32: Variants of H-Measures
My idea for introducing one characteristic length (32.1) and (32.2); 32.1: it gives H-measures independent of x_{N+1}, the idea of semi-classical measures of P. Gérard (32.3); 32.2: semi-classical measures for one-dimensional oscillations (32.4)–(32.6); 32.3: and its H-measures (32.7) and (32.8); 32.4: a commutation lemma (32.9)–(32.11); 32.5: two compactifications; 32.6: H-measure on the compactification (32.12)–(32.14), a mistake of P.-L. Lions and Paul, the Wigner transform (32.15)–(32.17), the idea of P.-L. Lions and Paul using the Wigner transform (32.18), my approach with P. Gérard using two-point correlations (32.19)–(32.33), more general equations for the localization principle (32.34); 32.7: the localization principle away from 0 (32.35)–(32.42); 32.8: its implication at ∞ (32.43) and (32.44); 32.9: another form of the localization principle at ∞ (32.45)–(32.50), a computation with P. Gérard on a sequence with two characteristic lengths (32.51)–(32.60), an intuitive explanation with beats, puzzling facts about spectroscopy, the approach of P. Gérard for deriving equations for the two-point correlation measures for the Schrödinger equation (32.61)–(32.68), for the heat equation (32.69)–(32.74), a computation with P. Gérard for k-point correlation measures for the heat equation (32.75)–(32.77), the case of variable coefficients (32.78)–(32.83), a computation of P. Gérard on how the Lorentz force appears from the Dirac equation with a large mass term, my research programme.

Chapter 33: Relations Between Young Measures and H-Measures
Why Young measures cannot see differential equations and cannot characterize microstructures; 33.1: laminating m materials in one direction at order γ^2 (33.1) and (33.2); 33.2: H-measures associated to characteristic functions (33.3)–(33.6), a model from micromagnetism, mixing r materials (33.7)–(33.10); 33.3: a first type of construction (33.11)–(33.18); 33.4: a second type of construction (33.19)–(33.39), an analogy with matrices of inertia (33.40)–(33.46); 33.5: admissible decompositions (33.47) and (33.48); 33.6: a third type of construction (33.49)–(33.54); 33.7: H-measures constructed by lamination (33.55)–(33.63); 33.8: a generalization (33.64); 33.9: a first type of construction (33.65); 33.10: a second type of construction (33.66)–(33.70); 33.11: a third type of construction (33.71)–(33.78); 33.12: sequences corresponding to a given Young measure and satisfying some particular differential system.
Chapter 34: Conclusion

My early difficulties about reading and writing, splitting some chapters into two parts, remarks on homogenization in optimal design, adapted microstructures for heat conduction and elasticity, remarks about three-point correlations, the difficulty of discovering useful generalizations, why periodicity assumptions are not so useful, when does the frequency of light play a role, the geometrical theory of diffraction (GTD) of Keller, about Bloch waves and the Bragg law for X-ray diffraction, about concentration effects, beyond partial differential equations and GTH.

35: Biographical Information

Basic biographical information for people whose name is associated with something mentioned in the book.

36: Abbreviations and Mathematical Notation

References

Index
The General Theory of Homogenization
A Personalized Introduction
Tartar, L.
2010, XXII, 471 p., Softcover
ISBN: 978-3-642-05194-4