Contents

Part I Foundations of the Renormalization Group

1 Phase Transitions and the Scaling Hypothesis 5
 1.1 Classification of Phase Transitions 5
 1.2 Critical Exponents and Universality of Continuous Phase Transitions 9
 1.3 The Scaling Hypothesis 12
 1.4 Scaling in the Vicinity of Quantum Critical Points 15
 References 21

2 Mean-Field Theory and the Gaussian Approximation 23
 2.1 Mean-Field Theory 24
 2.1.1 Landau Function and Free Energy 24
 2.1.2 Thermodynamic Critical Exponents 26
 2.2 Ginzburg–Landau Theory 30
 2.2.1 Exact Effective Field Theory 30
 2.2.2 Truncated Effective Action: \(\varphi^4 \)-Theory 34
 2.3 The Gaussian Approximation 39
 2.3.1 Gaussian Effective Action 39
 2.3.2 Gaussian Corrections to the Specific Heat Exponent 41
 2.3.3 Correlation Function 44
 2.3.4 Failure of the Gaussian Approximation in \(D < 4 \) 47
 References 52

3 Wilsonian Renormalization Group 53
 3.1 The Basic Idea 54
 3.2 Real-Space RG for the One-Dimensional Ising Model 61
 3.2.1 Exact Decimation 61
 3.2.2 Iteration and Fixed Points of the RG 66
 3.2.3 Infinitesimal Form of RG Recursion Relations 69
 3.3 General Properties of RG Flows 72
 3.3.1 RG Fixed Points and the Critical Surface 72

References
Contents

3.3.2 Local RG Flow Close to a Fixed Point: Classification of Couplings and Justification of the Scaling Hypothesis 75

3.3.3 Global Properties of RG Flows and Classification of Fixed Points 81

References 87

4 Critical Behavior of the Ising Model Close to Four Dimensions 91

4.1 Diagrammatic Perturbation Theory 91

4.1.1 Wick Theorem 93

4.1.2 Feynman Diagrams and Linked Cluster Theorem 95

4.1.3 Diagrams for Correlation Functions and the Irreducible Self-Energy 98

4.2 One-Loop Momentum Shell RG 101

4.2.1 Derivation of the RG Flow Equations 102

4.2.2 The Wilson–Fisher Fixed Point 108

4.2.3 Wave Function Renormalization and Anomalous Dimension 113

References 120

5 Field-Theoretical Renormalization Group 123

5.1 Divergencies and Their Regularization in Field Theory 123

5.2 Perturbative Renormalization 128

5.2.1 The Renormalized Lagrangian 128

5.2.2 Perturbative Calculation of Renormalization Factors 130

5.2.3 Relating Renormalized Perturbation Theory to Experiments 133

5.3 Callan–Symanzik Equation 135

References 139

Part II Introduction to the Functional Renormalization Group

6 Functional Methods 147

6.1 Generating Functionals for Green Functions 150

6.1.1Disconnected Green Functions 150

6.1.2 Connected Green Functions 151

6.1.3 Amputated Connected Green Functions 156

6.2 One-Line Irreducible Vertices 159

6.2.1 Generating Functional of the Irreducible Vertices 160

6.2.2 Tree Expansion 163

6.3 Symmetries 167

6.3.1 General Properties 169

6.3.2 Nonrelativistic Particles 171

6.3.3 Dyson–Schwinger and Skeleton Equations 176

References 179
7 Exact FRG Flow Equations ... 181
 7.1 Cutoffs ... 181
 7.2 Exact FRG Flow Equations for Generating Functionals 186
 7.2.1 Disconnected Green Functions ... 187
 7.2.2 Connected Green Functions ... 188
 7.2.3 Amputated Connected Green Functions 189
 7.2.4 One-Line Irreducible Vertices .. 190
 7.3 Exact FRG Equations for the Irreducible Vertices 194
 7.4 Spontaneous Symmetry Breaking: The Vertex Expansion with Vacuum Expectation Values 200
References .. 207

8 Vertex Expansion ... 209
 8.1 Vertex Expansion for Classical ϕ^4-Theory 210
 8.1.1 Exact FRG Flow Equations ... 212
 8.1.2 Rescaled Flow Equations ... 213
 8.1.3 FRG Flow Equations for a Sharp Momentum Cutoff 217
 8.2 Recovering the Momentum Shell Results from the FRG 219
 8.3 Momentum-Dependent Self-Energy in the Symmetric Phase 221
 8.3.1 Scaling Functions ... 221
 8.3.2 Truncation Strategy Based on Relevance 222
 8.3.3 FRG Results for the Self-Energy Scaling Function 228
 8.4 Momentum-Dependent Self-Energy in the Symmetry-Broken Phase 229
References .. 232

9 Derivative Expansion ... 233
 9.1 Derivative Expansion for the $O(N)$-Symmetric Classical ϕ^4-Theory ... 233
 9.2 Local Potential Approximation ... 237
 9.2.1 RG Equation for the Effective Potential 237
 9.2.2 Fixed Points and Critical Exponents ... 239
 9.3 Beyond the Local Potential Approximation 242
References .. 247

Part III Functional Renormalization Group Approach to Fermions

10 Fermionic Functional Renormalization Group 255
 10.1 Symmetries of the Two-Fermion Interaction 255
 10.2 Exact FRG Flow Equations for the Irreducible Vertices 259
 10.2.1 From Superfield to Partially Symmetrized Notation 259
 10.2.2 Exact FRG Flow Equations ... 262
 10.2.3 $SU(2)$-Invariant Flow Equations ... 268
 10.3 Single-Channel Truncations ... 269
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.1</td>
<td>Ladder Approximation in the Particle–Particle Channel</td>
<td>269</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Random Phase Approximation in the Forward Scattering Channel</td>
<td>273</td>
</tr>
<tr>
<td>10.4</td>
<td>Rescaled Flow Equations and Definition of the Fermi Surface</td>
<td>274</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Scaling Toward the Fermi Surface</td>
<td>275</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Classification of Couplings</td>
<td>282</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Exact Integral Equation for the Fermi Surface</td>
<td>284</td>
</tr>
<tr>
<td>10.5</td>
<td>One-Loop Patching Approximations</td>
<td>285</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Flow of Marginal Couplings</td>
<td>287</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Spinless Fermions</td>
<td>290</td>
</tr>
<tr>
<td>10.5.3</td>
<td>One-Dimensional g-ology for $SU(2)$-Invariant Models</td>
<td>292</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Many-Patch RG for the Square-Lattice Hubbard Model</td>
<td>297</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>302</td>
</tr>
</tbody>
</table>

11	Normal Fermions: Partial Bosonization in the Forward Scattering Channel	305
11.1	Hubbard–Stratonovich Transformation in the Forward Scattering Channel	307
11.2	Exact FRG Flow Equations	310
11.3	Dyson–Schwinger and Skeleton Equations	315
11.4	Ward Identities	317
11.5	Exact Solution of the FRG Flow Equations for Fermions with Linear Dispersion via Ward Identities	322
References		324

12	Superfluid Fermions: Partial Bosonization in the Particle–Particle Channel	327
12.1	Hubbard–Stratonovich Transformation in the Particle–Particle Channel	328
12.2	Mean-field Approximation and BCS–BEC Crossover	330
12.3	Gaussian Fluctuations	335
12.3.1	Gaussian Effective Action	335
12.3.2	Bosonic Propagators and Order-Parameter Correlations	339
12.4	Dyson–Schwinger Equations and Ward Identities	342
12.4.1	Dyson–Schwinger and Skeleton Equations	342
12.4.2	Ward Identities	345
12.5	FRG Approach with Total Momentum Cutoff	346
12.5.1	Superfield Notation	347
12.5.2	Truncation of the Vertex Expansion	351
12.5.3	Truncation with Momentum-Independent Self-Energies	357
12.6	Outlook	362
References		365

| Index | | 369 |
Introduction to the Functional Renormalization Group
Kopietz, P.; Bartosch, L.; Schütz, F.
2010, XII, 380 p. 68 illus., Hardcover
ISBN: 978-3-642-05093-0