Contents

28 Electron–Electron Interaction and Correlations 1
 28.1.1 The Hamiltonian 2
 28.1.2 Second-Quantized Form of the Hamiltonian 4
 28.1.3 The Homogeneous Electron Gas 6
 28.1.4 Interaction Between Bloch Electrons 8
 28.1.5 The Hubbard Model 10
 28.2 Normal Fermi Systems 14
 28.3 Simple Approximate Treatments of the Interaction 17
 28.3.1 Hartree Approximation 18
 28.3.2 Hartree Approximation as a Mean-Field Theory 20
 28.3.3 Hartree Equations Derived from the Variational
 Principle .. 23
 28.3.4 Hartree–Fock Approximation 24
 28.3.5 Hartree–Fock Approximation as a Mean-Field Theory . 26
 28.3.6 Quasiparticles in the Hartree–Fock Approximation ... 30
 28.3.7 Total Energy in the Hartree–Fock Approximation 32
 28.3.8 Hartree–Fock Theory of the Uniform Electron Gas ... 33
 28.3.9 Hartree–Fock Theory of the Hubbard Model 38
 28.4 Spatial and Temporal Correlations 39
 28.4.1 The n-Particle Density Matrix 39
 28.4.2 Pair Distribution Functions 44
 28.4.3 Correlations in the Homogeneous Electron Gas 47
 28.4.4 The Structure Factor 51
 28.4.5 Dynamical Correlations Between Electrons 53
 28.4.6 Dynamical Structure Factor and Scattering Cross
 Section ... 58
 28.4.7 Magnetic Correlations 59
29 Electronic Response to External Perturbations 61
 29.1 The Dielectric Function 61
 29.1.1 Dielectric Response of the Electron System 63
 29.1.2 Density–Density Response Function 65
 29.1.3 Relationship to the Dynamical Structure Factor ... 67
 29.1.4 Self-Consistent Treatment of the Interaction 68
 29.2 Dielectric Function of the Uniform Electron Gas 71
 29.2.1 Thomas–Fermi Approximation 71
 29.2.2 The RPA ... 73
 29.2.3 The Lindhard Dielectric Function 75
 29.2.4 Alternative Derivation of the Lindhard Function ... 77
 29.2.5 Explicit Form of the Lindhard Dielectric Function ... 80
 29.2.6 Corrections Beyond the RPA 83
 29.2.7 Effect of Finite Relaxation Time 86
 29.3 Static Screening ... 89
 29.3.1 Thomas–Fermi Screening 90
 29.3.2 Friedel Oscillations 92
 29.4 Dielectric Function of Metals and Semiconductors 93
 29.4.1 Dielectric Function of Bloch Electrons 94
 29.4.2 Dielectric Constant of Semiconductors 95
 29.5 Dielectric Function in Special Cases 97
 29.5.1 Dielectric Function of the Two-Dimensional Electron Gas ... 98
 29.5.2 Dielectric Function of the One-Dimensional Electron Gas ... 99
 29.5.3 Materials with Nested Fermi Surface 102
 29.6 Response to Electromagnetic Field 104
 29.6.1 Interaction with the Electromagnetic Field 104
 29.6.2 Current–Current Correlations and the Kubo Formula . 106
 29.6.3 Transverse and Longitudinal Response 110
 29.6.4 Dielectric Tensor and Conductivity 115
 29.6.5 Transverse Dielectric Function of the Electron Gas ... 116
 29.7 Optical and DC Conductivity 117
 29.7.1 Optical Conductivity 117
 29.7.2 Optical Conductivity of the Electron Gas 119
 29.7.3 DC Conductivity 121
 29.7.4 The Kubo–Greenwood Formula 123
 29.8 Response to Magnetic Perturbations 125
 29.8.1 Stoner Enhancement of the Susceptibility 125
 29.8.2 Dynamical Susceptibility 127
 29.8.3 Transverse Dynamical Susceptibility 133
 29.8.4 Ruderman–Kittel Oscillations 135
30 Cohesive Energy of the Electron System 139
 30.1 Total Energy of the Dense Electron Gas 139
 30.1.1 Total Energy in the Hartree–Fock Approximation .. 139
 30.1.2 The Exchange Potential 142
 30.1.3 Higher Order Corrections to the Energy 144
 30.1.4 Relationship Between Energy and Correlation
 Function .. 148
 30.1.5 Correlation Energy in the RPA 150
 30.2 The Total Energy at Lower Densities 151
 30.2.1 The Low-Density Electron Gas, Wigner Crystal 152
 30.2.2 Parametrization of the Correlation Energy 156
 30.3 The Density-Functional Theory 158
 30.3.1 Hohenberg–Kohn Theorems 159
 30.3.2 Kohn–Sham Equations 163
 30.3.3 Local-Density Approximation 166
 30.3.4 Spin-Polarized Systems 167
 30.3.5 Applications of the Density-Functional Theory 173

31 Excitations in the Interacting Electron Gas 175
 31.1 One-Particle and Electron–Hole Pair Excitations 176
 31.1.1 One-Particle Elementary Excitations 176
 31.1.2 Effective Mass of Quasiparticles 182
 31.1.3 Lifetime of Electron States 184
 31.1.4 Electron–Hole Pair Excitations 186
 31.2 Collective Excitations 191
 31.2.1 Dispersion Relation of Plasmons 192
 31.2.2 Study of Plasmons with Inelastic Scattering of
 Electrons .. 194
 31.2.3 Transverse Excitations in the Electron Gas 197
 31.3 Bound Electron–Hole Pairs, Excitons 199
 31.3.1 Electron–Hole Pairs in Semiconductors and Insulators. 199
 31.3.2 Wannier Excitons 200
 31.3.3 Frenkel Excitons 203
 31.4 Magnetic Excitations 205
 31.4.1 Paramagnons in Nearly Ferromagnetic Metals 205
 31.4.2 Spin Waves in Magnetic Field 207

32 Fermion Liquids ... 211
 32.1 Ground State and Excited States of Normal Fermi Systems .. 212
 32.1.1 Ground State of Normal Fermi Systems 214
 32.1.2 Quasiparticles in Normal Fermi Systems 214
 32.2 Landau’s Theory of Fermi Liquids 216
 32.2.1 Energy of Quasiparticles and Their Interaction ... 217
 32.2.2 Distribution Function of Quasiparticles 221
 32.2.3 Thermodynamic Properties of Fermi Liquids 222
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.2.4</td>
<td>Creation of Quasiparticles by External Perturbation</td>
<td>224</td>
</tr>
<tr>
<td>32.2.5</td>
<td>Susceptibility of Fermi Liquids</td>
<td>226</td>
</tr>
<tr>
<td>32.2.6</td>
<td>Effective Mass of Quasiparticles</td>
<td>229</td>
</tr>
<tr>
<td>32.2.7</td>
<td>Stability Condition of Fermi Liquids</td>
<td>233</td>
</tr>
<tr>
<td>32.2.8</td>
<td>3He as a Normal Fermi Liquid</td>
<td>235</td>
</tr>
<tr>
<td>32.2.9</td>
<td>Charged Fermi Liquid in Metals</td>
<td>239</td>
</tr>
<tr>
<td>32.3</td>
<td>Tomonaga–Luttinger Model</td>
<td>242</td>
</tr>
<tr>
<td>32.3.1</td>
<td>Linearized Dispersion Relation</td>
<td>243</td>
</tr>
<tr>
<td>32.3.2</td>
<td>Bosonic Electron–Hole Excitations</td>
<td>246</td>
</tr>
<tr>
<td>32.3.3</td>
<td>Bosonic Form of the Noninteracting Hamiltonian</td>
<td>251</td>
</tr>
<tr>
<td>32.3.4</td>
<td>Spin–Charge Separation</td>
<td>254</td>
</tr>
<tr>
<td>32.3.5</td>
<td>Interactions in the Tomonaga–Luttinger Model</td>
<td>257</td>
</tr>
<tr>
<td>32.3.6</td>
<td>Excitations in the Interacting Model</td>
<td>260</td>
</tr>
<tr>
<td>32.3.7</td>
<td>Thermodynamic Properties and Correlation Functions</td>
<td>264</td>
</tr>
<tr>
<td>32.3.8</td>
<td>Absence of the Fermi Edge</td>
<td>269</td>
</tr>
<tr>
<td>32.4</td>
<td>The Hubbard Model in One Dimension</td>
<td>272</td>
</tr>
<tr>
<td>32.4.1</td>
<td>Bethe-Ansatz Solution</td>
<td>273</td>
</tr>
<tr>
<td>32.4.2</td>
<td>Ground State of the Hubbard Chain</td>
<td>276</td>
</tr>
<tr>
<td>32.4.3</td>
<td>Low-Energy Excitations</td>
<td>278</td>
</tr>
<tr>
<td>32.4.4</td>
<td>Correlation Functions in a Hubbard Chain</td>
<td>289</td>
</tr>
<tr>
<td>32.4.5</td>
<td>Mapping Between the Hubbard and TL Models</td>
<td>290</td>
</tr>
<tr>
<td>32.5</td>
<td>Luttinger Liquids</td>
<td>292</td>
</tr>
<tr>
<td>32.5.1</td>
<td>Low-Energy Spectrum of the XXZ Chain</td>
<td>293</td>
</tr>
<tr>
<td>32.5.2</td>
<td>Generic Properties</td>
<td>300</td>
</tr>
<tr>
<td>32.5.3</td>
<td>Scaling Theory of the One-Dimensional Electron Gas</td>
<td>302</td>
</tr>
<tr>
<td>32.5.4</td>
<td>Experimental Results</td>
<td>306</td>
</tr>
<tr>
<td>32.5.5</td>
<td>Luttinger Liquids in Higher Dimensions</td>
<td>309</td>
</tr>
<tr>
<td>32.6</td>
<td>Alternatives to Luttinger-Liquid Behavior</td>
<td>309</td>
</tr>
<tr>
<td>32.6.1</td>
<td>Mott Insulator</td>
<td>309</td>
</tr>
<tr>
<td>32.6.2</td>
<td>Luther–Emery Liquid</td>
<td>312</td>
</tr>
<tr>
<td>32.6.3</td>
<td>Phase separation</td>
<td>313</td>
</tr>
<tr>
<td>32.7</td>
<td>Quantum Hall Liquid</td>
<td>313</td>
</tr>
<tr>
<td>32.7.1</td>
<td>Fractional Quantum Hall Effect</td>
<td>313</td>
</tr>
<tr>
<td>32.7.2</td>
<td>Laughlin State</td>
<td>315</td>
</tr>
<tr>
<td>32.7.3</td>
<td>Quasiparticles in the Quantum Hall Liquid</td>
<td>318</td>
</tr>
<tr>
<td>32.7.4</td>
<td>Anisotropic Hall Liquids</td>
<td>319</td>
</tr>
<tr>
<td>33</td>
<td>Electronic Phases with Broken Symmetry</td>
<td>321</td>
</tr>
<tr>
<td>33.1</td>
<td>Ferromagnetic Instability</td>
<td>323</td>
</tr>
<tr>
<td>33.1.1</td>
<td>Ferromagnetism in the Homogeneous Electron Gas</td>
<td>323</td>
</tr>
<tr>
<td>33.1.2</td>
<td>Stoner Model</td>
<td>324</td>
</tr>
<tr>
<td>33.1.3</td>
<td>Stoner Excitations</td>
<td>327</td>
</tr>
<tr>
<td>33.1.4</td>
<td>Stoner Model at Finite Temperatures</td>
<td>329</td>
</tr>
<tr>
<td>33.1.5</td>
<td>Failure of the Stoner Model</td>
<td>330</td>
</tr>
</tbody>
</table>
33.1.6 Spin Waves in the Ferromagnetic Electron Gas 330
33.1.7 Role of Spin Waves in the Ferromagnetic Electron Gas .. 334
33.2 Itinerant Antiferromagnets 335
33.2.1 Slater’s Theory of Antiferromagnetism 336
33.2.2 Antiferromagnetic Exchange 339
33.3 Spin-Density Waves 342
33.3.1 Susceptibility of the One-Dimensional Model 343
33.3.2 The Spin-Density-Wave Ground State 346
33.3.3 One-Particle Excitation in the SDW State 348
33.3.4 The Energy Gap 352
33.3.5 Collective Excitations 355
33.4 Charge-Density Waves 357
33.4.1 Peierls Transition 357
33.4.2 The CDW State 360
33.4.3 Determination of the Gap 362
33.4.4 Collective Excitations 364
33.4.5 Dynamics of Charge-Density Waves 365
33.4.6 Topological Excitations 368
33.4.7 Soliton Lattice 373
33.4.8 Electrodynamics of Charge-Density Waves 375
33.4.9 The Role of Fluctuations and Interchain Couplings ... 377
33.5 Density Waves in Quasi-One-Dimensional Materials 380
33.5.1 Quasi-One-Dimensional Materials 381
33.5.2 Nonlinear and Oscillation Phenomena 388

34 Microscopic Theory of Superconductivity 393
34.1 Instability Against Pair Formation 393
34.1.1 Cooper Pairs 394
34.1.2 Instability at Finite Temperatures 398
34.2 The Bardeen–Cooper–Schrieffer Theory 404
34.2.1 BCS Hamiltonian and BCS Ground State 404
34.2.2 Variational Calculation of the Coherence Factors 408
34.2.3 Coherence Length 411
34.2.4 Energy of the Superconducting State 412
34.2.5 Excited States of Superconductors 414
34.2.6 Quasiparticles in the Superconducting State 416
34.2.7 BCS Theory at Finite Temperatures 420
34.2.8 Critical Temperature and the Gap 425
34.3 Thermodynamics and Electrodynamics of Superconductors 426
34.3.1 Thermodynamic Properties 427
34.3.2 Infinite Conductivity 431
34.3.3 The Meissner–Ochsenfeld Effect 432
34.4 Inhomogeneous Superconductors and Retardation Effects 434
34.4.1 Bogoliubov Equations 434
34.4.2 Derivation of the Ginzburg–Landau Equations 438
34.4.3 Eliashberg Equations 441
34.5 Unconventional Superconductors 445
 34.5.1 Non-s-Wave Superconductors 445
 34.5.2 High-Temperature Superconductors 449
 34.5.3 Heavy-Fermion Superconductors 452
 34.5.4 Organic Superconductors 455
 34.5.5 Coexistence of Superconductivity
 and Ferromagnetism 456
34.6 Tunneling Phenomena 457
 34.6.1 General Description of Tunneling 457
 34.6.2 Tunneling in SIN Junctions 460
 34.6.3 Tunneling in SIS Junctions 463
 34.6.4 Microscopic Calculation of the Current 465
 34.6.5 Green-Function Theory of Tunneling 470

35 Strongly Correlated Systems 473
 35.1 The Mott Metal–Insulator Transition 474
 35.1.1 Physical Picture for the Mott Transition 477
 35.1.2 Simple Treatment of the Hubbard Model 480
 35.1.3 The Gutzwiller–Brinkman–Rice Approach 484
 35.1.4 Numerical Results 487
 35.1.5 Other Phases of the Hubbard Model 490
 35.2 Magnetic Impurities in Metals 492
 35.2.1 The Anderson Model 493
 35.2.2 Formation of the Localized Moment 494
 35.2.3 Better Treatment of the Anderson Model 498
 35.2.4 Kondo Model 501
 35.2.5 Perturbative Treatment of the Kondo Problem 502
 35.2.6 Scaling Theory of the Kondo Problem 504
 35.2.7 Wilson’s Solution of the Kondo Problem 510
 35.2.8 Low-Temperature Behavior of the Kondo Model 513
 35.2.9 Nozières’s Local-Fermi-Liquid Theory 514
 35.3 Mixed-Valence and Heavy-Fermion Compounds 517
 35.3.1 Mixed-Valence Compounds 518
 35.3.2 Heavy-Fermion Materials 519
 35.3.3 Periodic Anderson Model 521
 35.3.4 Kondo Lattice 526
 35.3.5 Open Problems 528

36 Disordered Systems ... 531
 36.1 Disordered Alloys 532
 36.1.1 Averaged T-Matrix Approximation 533
 36.1.2 Coherent-Potential Approximation 536
 36.2 The Anderson Metal–Insulator Transition 537
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.2.1</td>
<td>Anderson Localization</td>
<td>538</td>
</tr>
<tr>
<td>36.2.2</td>
<td>Continuous or Discontinuous Transition</td>
<td>540</td>
</tr>
<tr>
<td>36.2.3</td>
<td>Phase Coherence and Interference of Electrons</td>
<td>542</td>
</tr>
<tr>
<td>36.2.4</td>
<td>Oscillation Phenomena due to Phase Coherence</td>
<td>545</td>
</tr>
<tr>
<td>36.2.5</td>
<td>Quantum Corrections to Conductivity, Weak Localization</td>
<td>547</td>
</tr>
<tr>
<td>36.2.6</td>
<td>Strong Localization, Hopping Conductivity</td>
<td>552</td>
</tr>
<tr>
<td>36.2.7</td>
<td>Scaling Theory of Localization</td>
<td>554</td>
</tr>
<tr>
<td>36.2.8</td>
<td>The Role of Electron–Electron Interaction</td>
<td>560</td>
</tr>
<tr>
<td>36.3</td>
<td>Spin Glasses</td>
<td>561</td>
</tr>
<tr>
<td>36.3.1</td>
<td>Experimental Findings</td>
<td>562</td>
</tr>
<tr>
<td>36.3.2</td>
<td>Models of Spin Glasses</td>
<td>565</td>
</tr>
<tr>
<td>36.3.3</td>
<td>Quenched Disorder</td>
<td>566</td>
</tr>
<tr>
<td>36.3.4</td>
<td>Frustration</td>
<td>567</td>
</tr>
<tr>
<td>36.3.5</td>
<td>Edwards–Anderson Model of Spin Glasses</td>
<td>569</td>
</tr>
<tr>
<td>36.3.6</td>
<td>Sherrington–Kirkpatrick Model</td>
<td>571</td>
</tr>
<tr>
<td>36.3.7</td>
<td>Recent Developments</td>
<td>573</td>
</tr>
<tr>
<td>J</td>
<td>Response to External Perturbations</td>
<td>577</td>
</tr>
<tr>
<td>J.1</td>
<td>Linear Response Theory</td>
<td>577</td>
</tr>
<tr>
<td>J.1.1</td>
<td>Time-Dependent Response</td>
<td>578</td>
</tr>
<tr>
<td>J.1.2</td>
<td>Generalized Susceptibilities</td>
<td>580</td>
</tr>
<tr>
<td>J.1.3</td>
<td>Kubo Formula</td>
<td>582</td>
</tr>
<tr>
<td>J.1.4</td>
<td>Alternative Form of the Kubo Formula</td>
<td>584</td>
</tr>
<tr>
<td>J.1.5</td>
<td>Analytic Properties of Susceptibilities</td>
<td>585</td>
</tr>
<tr>
<td>J.1.6</td>
<td>Kramers–Kronig Relations</td>
<td>588</td>
</tr>
<tr>
<td>J.1.7</td>
<td>Response Functions and Correlation Functions</td>
<td>589</td>
</tr>
<tr>
<td>J.1.8</td>
<td>Fluctuation–Dissipation Theorem</td>
<td>591</td>
</tr>
<tr>
<td>J.2</td>
<td>Density–Density Response Function</td>
<td>593</td>
</tr>
<tr>
<td>J.2.1</td>
<td>Sum Rules</td>
<td>594</td>
</tr>
<tr>
<td>J.2.2</td>
<td>Equation-of-Motion Method</td>
<td>598</td>
</tr>
<tr>
<td>J.2.3</td>
<td>Decoupling Procedures</td>
<td>601</td>
</tr>
<tr>
<td>J.2.4</td>
<td>Alternative Derivation</td>
<td>606</td>
</tr>
<tr>
<td>K</td>
<td>Green Functions of the Many-Body Problem</td>
<td>611</td>
</tr>
<tr>
<td>K.1</td>
<td>Green Functions</td>
<td>611</td>
</tr>
<tr>
<td>K.1.1</td>
<td>One-Particle Green Function</td>
<td>612</td>
</tr>
<tr>
<td>K.1.2</td>
<td>Phonon Propagator</td>
<td>616</td>
</tr>
<tr>
<td>K.1.3</td>
<td>Spectral Representation</td>
<td>616</td>
</tr>
<tr>
<td>K.1.4</td>
<td>Green Function and Density of States</td>
<td>622</td>
</tr>
<tr>
<td>K.1.5</td>
<td>Temperature Green Function</td>
<td>624</td>
</tr>
<tr>
<td>K.1.6</td>
<td>Relation Between the Retarded, Advanced, and Temperature Green Functions</td>
<td>627</td>
</tr>
<tr>
<td>K.2</td>
<td>Calculating the Green Functions</td>
<td>628</td>
</tr>
<tr>
<td>K.2.1</td>
<td>Equation of Motion for Green Functions</td>
<td>628</td>
</tr>
</tbody>
</table>
K.2 Perturbation Theory at Zero Temperature 635
K.2.2 Perturbation Theory at Zero Temperature 635
K.2.3 Finite-Temperature Diagram Technique 642
K.3 Green Functions in Superconductivity 645
K.3.1 Gorkov Equations 646
K.3.2 Temperature Green Functions for Superconductors 648
K.3.3 Derivation of the Ginzburg–Landau Equations 650

L Field Theory of Luttinger Liquids 653
L.1 Field Theory of the Harmonic Chain 653
L.2 Fermion–Boson Equivalence 655
L.2.1 Phase Field for Spinless Fermions 655
L.2.2 Klein Factors ... 663
L.2.3 Bosonized Form of the Fermion Field Operators 665
L.2.4 Boson Representation of the Spin Operators 668
L.2.5 Fermions with Spin 669
L.3 Boson Representation of the Hamiltonian 671
L.3.1 Free Spinless Fermions 671
L.3.2 Boson Form of the Full Hamiltonian 673
L.3.3 Boson Form of the Umklapp Scattering 674
L.3.4 Fermions with Spin 674
L.4 Correlation Functions .. 676
L.4.1 Noninteracting Spinless Fermions 677
L.4.2 Interacting Spinless Fermions 679
L.4.3 Fermions with Spin 681

M Renormalization and Scaling in Solid-State Physics 683
M.1 Poor Man’s Scaling ... 683
M.1.1 General Considerations 684
M.1.2 Scaling Theory of the One-Dimensional Electron Gas . 686
M.1.3 Scaling Theory of the Kondo Problem 692
M.2 Numerical Renormalization Group 696

Figure Credits .. 705

Name Index ... 707

Subject Index .. 713
Fundamentals of the Physics of Solids
Volume 3 - Normal, Broken-Symmetry, and Correlated Systems
Sólyom, J.
2010, XXV, 747 p., Hardcover
ISBN: 978-3-642-04517-2