2.4.3 A Refined Transition State Model for the $S_N^2$ Reaction; Crossover Experiment and Endocyclic Restriction Test ............. 63
2.4.4 Substituent Effects on $S_N^2$ Reactivity. ...................... 66

2.5 $S_N^1$ Reactions: Kinetic and Stereochmical Analysis; Substituent Effects on Reactivity ........................................ 69
2.5.1 Energy Profile and Rate Law of $S_N^1$ Reactions; Steady State Approximation ........................................... 69
2.5.2 Stereochemistry of $S_N^1$ Reactions; Ion Pairs .................. 72
2.5.3 Solvent Effects on $S_N^1$ Reactivity ................................ 73
2.5.4 Substituent Effects on $S_N^1$ Reactivity. ....................... 76

2.6 When Do $S_N$ Reactions at Saturated C Atoms Take Place According to the $S_N^1$ Mechanism and When Do They Take Place According to the $S_N^2$ Mechanism? .............................................. 83

2.7 Getting by with Help from Friends, or a Least Neighbors: Neighboring Group Participation ........................................ 83
2.7.1 Conditions for and Features of $S_N$ Reactions with Neighboring Group Participation ........................................... 83
2.7.2 Increased Rate through Neighboring Group Participation ...... 85
2.7.3 Stereoselectivity through Neighboring Group Participation ... 86

2.8 $S_N^1$ Reactions ..................................................... 89

2.9 Preparatively Useful $S_N^2$ Reactions: Alkylations ................ 91

3 Electrophilic Additions to the $C=\overset{\equiv}{=\overset{\equiv}{=}}\overset{\equiv}{=}$ Double Bond ................................................. 103

3.1 The Concept of cis- and trans-Addition .............................. 104

3.2 Vocabulary of Stereochemistry and Stereoselective Synthesis I .......................................................... 104
3.2.1 Isomerism, Diastereomers/Enantiomers, Chirality .............. 104
3.2.2 Chemoselectivity, Diastereoselectivity/Enantioselectivity, Stereospecificity/Stereoconvergence ......................... 106

3.3 Electrophilic Additions that Take Place Diastereoselectively as cis-Additions .................................................. 109
3.3.1 A Cycloaddition Forming Three-Membered Rings .......... 109
3.3.2 Additions to $C=\overset{\equiv}{=\overset{\equiv}{=}}\overset{\equiv}{=}$ Double Bonds That Are Related to Cycloadditions and Also Form Three-Membered Rings .......... 114
3.3.3 cis-Hydration of Alkenes via the Hydroboration/Oxidation/Hydrolysis Reaction Sequence ......................... 118
3.3.4 Heterogeneous Hydrogenation .................................. 126

3.4 Enantioselective cis-Additions to $C=\overset{\equiv}{=\overset{\equiv}{=}}\overset{\equiv}{=}$ Double Bonds ............................................. 128
3.4.1 Vocabulary of Stereochemistry and Stereoselective Synthesis II: Topicity, Asymmetric Synthesis ......................... 128
3.4.2 Asymmetric Hydroboration of Achiral Alkenes ................. 129
3.4.3 Thought Experiment I on the Hydroboration of Chiral Alkenes with Chiral Boranes: Mutual Kinetic Resolution .......... 131
Contents

4.6.2 Nonunimolecular $E_{1cb}$ Eliminations: Energy Profile and Rate Law . 190
4.6.3 Alkene-Forming Step of the Julia-Lythgoe Olefination .......... 191
4.6.4 $E_{1cb}$ Eliminations in Protecting Group Chemistry .......... 192

4.7 $\beta$-Eliminations of $\text{Het}^1$/Het$^2$ . 194
4.7.1 Fragmentation of $\beta$-Heterosubstituted Organometallic Compounds . 194
4.7.2 Peterson Olefination ........................................ 195
4.7.3 Oxaphosphetane Fragmentation, Last Step of Wittig and Horner–Wadsworth–Emmons Reactions . 196

5 Substitution Reactions on Aromatic Compounds ................................ 201

5.1 Electrophilic Aromatic Substitutions via Sigma Complexes
(“Ar-SE Reactions”) .................................................. 201
5.1.1 Mechanism: Substitution of $H^\circ$ vs $ipso$-Substitution ........ 201
5.1.2 Thermodynamic Aspects of $Ar-S_E$ Reactions .................. 205
5.1.3 Kinetic Aspects of $Ar-S_E$ Reactions: Reactivity and Regioselectivity in Reactions of Electrophiles with Substituted Benzenes . 209

5.2 $Ar-S_E$ Reactions via Sigma Complexes: Individual Reactions ........................................ 215
5.2.1 Ar—Hal Bond Formation by $Ar-S_E$ Reaction ................ 215
5.2.2 Ar—SO$_3$H Bond Formation by $Ar-S_E$ Reaction .............. 218
5.2.3 Ar—NO$_2$ Bond Formation by $Ar-S_E$ Reaction .............. 219
5.2.4 Ar—N=N Bond Formation by $Ar-S_E$ Reaction ................ 223
5.2.5 Ar—Alkyl Bond Formations by $Ar-S_E$ Reaction .............. 225
5.2.6 Ar—C(OH) Bond Formation by $Ar-S_E$ Reactions and Associated Secondary Reactions ........................................ 228
5.2.7 Ar—C(=O) Bond Formation by $Ar-S_E$ Reaction .............. 229
5.2.8 Ar—C(=O)H Bond Formation through $Ar-S_E$ Reaction ....... 233

5.3 Electrophilic Substitution Reactions on Metalated Aromatic Compounds . 234
5.3.1 Electrophilic Substitution Reactions of ortho-Lithiated Benzene and Naphthalene Derivatives ................................. 234
5.3.2 Electrophilic Substitution Reactions in Aryl Grignard and Aryllithium Compounds That Are Accessible from Aryl Halides .. 237
5.3.3 Electrophilic Substitutions of Arylboronic Acids and Arylboronic Esters ........................................ 242

5.4 Nucleophilic Substitution Reactions of Aryldiazonium Salts .......... 243
5.5 Nucleophilic Substitution Reactions via Meisenheimer Complexes .... 247
5.5.1 Mechanism ................................................... 247
5.5.2 Examples of Reactions of Preparative Interest .................. 249

5.6 Nucleophilic Aromatic Substitution via Arynes, $cine$ Substitution .... 251

6 Nucleophilic Substitution Reactions at the Carboxyl Carbon ............ 259

6.1 C=O-Containing Substrates and Their Reactions with Nucleophiles .... 259
6.2 Mechanisms, Rate Laws, and Rate of Nucleophilic Substitution Reactions at the Carboxyl Carbon ........................................ 261
<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Additions of Heteroatom Nucleophiles to Carbonyl Compounds and Subsequent Reactions—Condensations of Heteroatom Nucleophiles with Carbonyl Compounds</td>
<td>359</td>
</tr>
<tr>
<td>9.1 Additions of Heteroatom Nucleophiles or Hydrocyanic Acid to Carbonyl Compounds</td>
<td>359</td>
</tr>
<tr>
<td>9.1.1 On the Equilibrium Position of Addition Reactions of Heteroatom Nucleophiles to Carbonyl Compounds</td>
<td>360</td>
</tr>
<tr>
<td>9.1.2 Hemiacetal Formation</td>
<td>361</td>
</tr>
<tr>
<td>9.1.3 Formation of Cyanohydrins and α-Aminonitriles</td>
<td>366</td>
</tr>
<tr>
<td>9.1.4 Oligomerization of Aldehydes—Polymerization of Formaldehyde</td>
<td>369</td>
</tr>
<tr>
<td>9.2 Addition of Heteroatom Nucleophiles to Carbonyl Compounds in Combination with Subsequent $S_N$ Reactions of the Primary Product: Acetalizations</td>
<td>371</td>
</tr>
<tr>
<td>9.2.1 Mechanism</td>
<td>371</td>
</tr>
<tr>
<td>9.2.2 Formation of $O,O$-Acetals</td>
<td>373</td>
</tr>
<tr>
<td>9.2.3 Formation of $S,S$-Acetals</td>
<td>382</td>
</tr>
<tr>
<td>9.2.4 Formation of $N,N$-Acetals</td>
<td>383</td>
</tr>
<tr>
<td>9.3 Addition of Nitrogen Nucleophiles to Carbonyl Compounds in Combination with Subsequent $E_1$ Eliminations of the Primary Product: Condensation Reactions</td>
<td>386</td>
</tr>
<tr>
<td>10 Addition of Hydride Donors and of Organometallic Compounds to Carbonyl Compounds</td>
<td>397</td>
</tr>
<tr>
<td>10.1 Suitable Hydride Donors and Organometallic Compounds; the Structure of Organolithium Compounds and Grignard Reagents</td>
<td>397</td>
</tr>
<tr>
<td>10.2 Chemoselectivity of the Addition of Hydride Donors to Carbonyl Compounds</td>
<td>403</td>
</tr>
<tr>
<td>10.3 Diastereoselectivity of the Addition of Hydride Donors to Carbonyl Compounds</td>
<td>405</td>
</tr>
<tr>
<td>10.3.1 Diastereoselectivity of the Addition of Hydride Donors to Cyclic Ketones</td>
<td>406</td>
</tr>
<tr>
<td>10.3.2 Diastereoselectivity of the Addition of Hydride Donors to α-Chiral Acyclic Carbonyl Compounds</td>
<td>411</td>
</tr>
<tr>
<td>10.3.3 Diastereoselectivity of the Addition of Hydride Donors to β-Chiral Acyclic Carbonyl Compounds</td>
<td>419</td>
</tr>
<tr>
<td>10.4 Enantioselective Addition of Hydride Donors to Carbonyl Compounds</td>
<td>422</td>
</tr>
<tr>
<td>10.5 Addition of Organometallic Compounds to Carbonyl Compounds</td>
<td>426</td>
</tr>
<tr>
<td>10.5.1 Simple Addition Reactions of Organometallic Compounds</td>
<td>426</td>
</tr>
<tr>
<td>10.5.2 Enantioselective Addition of Organozinc Compounds to Carbonyl Compounds: Chiral Amplification</td>
<td>437</td>
</tr>
<tr>
<td>10.5.3 Diastereoselective Addition of Organometallic Compounds to Carbonyl Compounds</td>
<td>440</td>
</tr>
</tbody>
</table>
### 10.6 1,4-Additions of Organometallic Compounds to $\alpha,\beta$-Unsaturated Ketones; Structure of Copper-Containing Organometallic Compounds

- Page 443

### 11 Conversion of Phosphorus- or Sulfur-Stabilized C Nucleophiles with Carbonyl Compounds: Addition-Induced Condensations

- Page 457

#### 11.1 Condensation of Phosphonium Ylides with Carbonyl Compounds:
  - Wittig Reaction
    - Page 457
  - Bonding in Phosphonium Ylides
    - Page 457
  - Nomenclature and Preparation of Phosphonium Ylides
    - Page 458
  - Mechanism of the Wittig Reaction
    - Page 460

#### 11.2 Wittig–Horner Reaction

- Page 467

#### 11.3 Horner–Wadsworth–Emmons Reaction

- Page 471

#### 11.4 (Marc) Julia–Lythgoe- and (Sylvestre) Julia–Kocienski Olefination

- Page 482

### 12 The Chemistry of Enols and Enamines

- Page 487

#### 12.1 Keto-Enol Tautomerism; Enol Content of Carbonyl and Carboxyl Compounds

- Page 489

#### 12.2 $\alpha\alpha$-Functionalization of Carbonyl and Carboxyl Compounds via Tautomeric Enols

- Page 493

#### 12.3 $\alpha\alpha$-Functionalization of Ketones via Their Enamines

- Page 505

#### 12.4 $\alpha\alpha$-Functionalization of Enol Ethers and Silyl Enol Ethers

- Page 512

### 13 Chemistry of the Alkaline Earth Metal Enolates

- Page 519

#### 13.1 Basic Considerations

- Page 519

#### 13.2 Alklylation of Quantitatively Prepared Enolates and Aza-enolates; Chain-Elongating Syntheses of Carbonyl Compounds and Carboxylic Acid Derivatives

- Page 543

#### 13.3 Hydroxyalkylation of Enolates with Carbonyl Compounds (“Aldol Addition”):
  - Synthesis of $\beta$-Hydroxyketones and $\beta$-Hydroxyesters
    - Page 558
  - Driving Force of Aldol Additions and Survey of Reaction Products
    - Page 558
  - Stereocontrol
    - Page 560
13.4 Condensation of Enolates with Carbonyl Compounds: Synthesis of Michael Acceptors .......................................................... 565
  13.4.1 Aldol Condensations .......................................................... 565
  13.4.2 Knoevenagel Reaction ....................................................... 571
13.5 Acylation of Enolates .............................................................. 575
  13.5.1 Acylation of Ester Enolates ................................................ 575
  13.5.2 Acylation of Ketone Enolates ............................................ 579
  13.5.3 Acylation of the Enolates of Active-Methylene Compounds ...... 582
13.6 Michael Additions of Enolates ................................................ 584
  13.6.1 Simple Michael Additions ................................................ 584
  13.6.2 Tandem Reactions Consisting of Michael Addition and Consecutive Reactions .............................................................. 586

14 Rearrangements ................................................................. 595
  14.1 Nomenclature of Sigmatropic Shifts ...................................... 595
  14.2 Molecular Origins for the Occurrence of [1,2]-Rearrangements .... 596
  14.3 [1,2]-Rearrangements in Species with a Valence Electron Sextet ...... 598
      14.3.1 [1,2]-Rearrangements of Carbenium Ions ....................... 598
      14.3.2 [1,2]-Rearrangements in Carbenes or Carbenoids ............ 615
  14.4 [1,2]-Rearrangements without the Occurrence of a Sextet Intermediate ... 622
      14.4.1 Hydroperoxide Rearrangements .................................... 623
      14.4.2 Baeyer–Villiger Rearrangements ................................... 624
      14.4.3 Oxidation of Organoborane Compounds .......................... 627
      14.4.4 Beckmann Rearrangement ............................................ 629
      14.4.5 Curtius Degradation ................................................... 630
  14.5 Claisen Rearrangement ..................................................... 632
      14.5.1 Classical Claisen Rearrangement .................................. 632
      14.5.2 Ireland-Claisen Rearrangements ................................. 634

15 Thermal Cycloadditions ......................................................... 643
  15.1 Driving Force and Feasibility of One-Step [4+2]- and [2+2]-Cycloadditions ................................................................. 643
  15.2 Transition State Structures of Selected One-Step [4+2]- and [2+2]-Cycloadditions ................................................................. 644
      15.2.1 Stereostructure of the Transition States of One-Step [4+2]-Cycloadditions ................................................................. 644
      15.2.2 Frontier Orbital Interactions in the Transition States of One-Step [4+2]-Cycloadditions ................................................................. 645
      15.2.3 Frontier Orbital Interactions in the Transition States of the Unknown One-Step Cycloadditions of Alkenes or Alkynes to Alkenes ................................................................. 651
      15.2.4 Frontier Orbital Interactions in the Transition State of One-Step [2+2]-Cycloadditions Involving Ketenes ................................................................. 652
# Contents

## 15.3 Diels–Alder Reactions
- Stereoselectivity of Diels–Alder Reactions
- Substituent Effects on Reaction Rates of Diels–Alder Reactions
- Regioselectivity of Diels–Alder Reactions
- Simple Diastereoselectivity of Diels–Alder Reactions

## 15.4 [2+2]-Cycloadditions with Dichloroketene

## 15.5 1,3-Dipolar Cycloadditions
- 1,3-Dipoles
- Frontier Orbital Interactions in the Transition States of One-Step 1,3-Dipolar Cycloadditions; Sustmann Classification
- 1,3-Dipolar Cycloadditions of Diazooalkanes
- 1,3-Dipolar Cycloadditions of Nitrile Oxides
- 1,3-Dipolar Cycloadditions and 1,3-Dipolar Cycloreversions as Steps in the Ozonolysis of Alkenes
- A Tricky Reaction of Inorganic Azide

## 16 Transition Metal-Mediated Alkenylations, Arylations, and Alkynylations

### 16.1 Alkenylation and Arylation of Gilman Cuprates

### 16.2 Arylation and Alkynylation of Neutral Organocopper Compounds I

### 16.3 Alkenylation and Arylation of Grignard Compounds (Kumada Coupling)

### 16.4 Palladium-Catalyzed Alkenylations and Arylations of Organometallic Compounds
- A Prelude: Preparation of Haloalkenes and Alkenylboronic Acid Derivatives, Important Building Blocks for Palladium-Mediated C,C Couplings; Carbocupration of Alkynes
- Alkenylation and Arylation of Boron-Bound Groups (Suzuki Coupling)
- Alkenylation and Arylation of Organozinc Compounds (Negishi Couplings) and of Functionalized Organozinc Compounds
- Alkenylation and Arylation of Tin-bound Groups (Stille Reaction)
- Arylations, Alkenylations and Alkynylations of Neutral Organocopper Compounds II

### 16.5 Heck Reactions

## 17 Oxidations and Reductions

### 17.1 Oxidation Numbers in Organic Chemical Compounds, and Organic Chemical Redox Reactions

### 17.2 Cross-References to Redox Reactions Already Discussed in Chapters 1–16

### 17.3 Oxidations
- Oxidations in the Series Alcohol Æ Aldehyde Æ Carboxylic Acid
- Oxidative Cleavages
- Oxidations at Heteroatoms
17.4 Reductions

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4.1</td>
<td>Reductions $R_{sp^3}—X \rightarrow R_{sp^3}—H$ or $R_{sp^3}—X \rightarrow R_{sp^3}—M$</td>
<td>778</td>
</tr>
<tr>
<td>17.4.2</td>
<td>One-Electron Reductions of Carbonyl Compounds and Esters; Reductive Coupling</td>
<td>786</td>
</tr>
<tr>
<td>17.4.3</td>
<td>Reductions of Carboxylic Acid Derivatives to Alcohols or Amines</td>
<td>795</td>
</tr>
<tr>
<td>17.4.4</td>
<td>Reductions of Carboxylic Acid Derivatives to Aldehydes</td>
<td>800</td>
</tr>
<tr>
<td>17.4.5</td>
<td>Reductions of Carbonyl Compounds to Alcohols</td>
<td>800</td>
</tr>
<tr>
<td>17.4.6</td>
<td>Reductions of Carbonyl Compounds to Hydrocarbons</td>
<td>800</td>
</tr>
<tr>
<td>17.4.7</td>
<td>Hydrogenation of Alkenes</td>
<td>806</td>
</tr>
<tr>
<td>17.4.8</td>
<td>Reductions of Aromatic Compounds and Alkynes</td>
<td>815</td>
</tr>
<tr>
<td>17.4.9</td>
<td>The Reductive Step of the Julia–Lythgoe Olefination</td>
<td>819</td>
</tr>
</tbody>
</table>

Subject Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>827</td>
</tr>
</tbody>
</table>
Organic Mechanisms
Reactions, Stereochemistry and Synthesis
Bruckner, R. - Harmata, M. (Ed.)
2010, XXXII, 855 p., Hardcover
ISBN: 978-3-642-03650-7