Contents

1 Radical Substitution Reactions at the Saturated C Atom 1

1.1 Bonding and Preferred Geometries in Carbon Radicals, Carbenium Ions and Carbanions 2
 1.1.1 Preferred Geometries 3
 1.1.2 Bonding .. 4

1.2 Stability of Radicals .. 5
 1.2.1 Reactive Radicals ... 6
 1.2.2 Unreactive Radicals 10

1.3 Relative Rates of Analogous Radical Reactions 12
 1.3.1 The Bell–Evans–Polanyi Principle 12
 1.3.2 The Hammond Postulate 14

1.4 Radical Substitution Reactions: Chain Reactions 15

1.5 Radical Initiators .. 17

1.6 Radical Chemistry of Alkylmercury(II) Hydrides 18

1.7 Radical Halogenation of Hydrocarbons .. 21
 1.7.1 Simple and Multiple Chlorinations 21
 1.7.2 Regioselectivity of Radical Chlorinations 23
 1.7.3 Regioselectivity of Radical Brominations Compared to
 Chlorinations .. 25
 1.7.4 Rate Law for Radical Halogenations; Reactivity/Selectivity
 Principle and the Road to Perdition 27
 1.7.5 Chemoselectivity of Radical Brominations 29
 1.7.6 Radical Chain Chlorination Using Sulfuryl Chloride 35

1.8 Autoxidations .. 38

1.9 Synthetically Useful Radical Substitution Reactions 41
 1.9.1 Simple Reductions ... 41
 1.9.2 Formation of 5-Hexenyl Radicals: Competing Cyclopentane
 Formation ... 44

1.10 Diazene Fragmentations as Novel Alkane Syntheses 46

2 Nucleophilic Substitution Reactions at the Saturated C Atom 53

2.1 Nucleophiles and Electrophiles; Leaving Groups 53

2.2 Good and Poor Nucleophiles 54

2.3 Leaving Groups: Good, Bad and Ugly 58

2.4 $S_{N}2$ Reactions: Kinetic and Stereochemical Analysis—Substituent Effects
 on Reactivity ... 60
 2.4.1 Energy Profile and Rate Law for $S_{N}2$ Reactions: Reaction Order 60
 2.4.2 Stereochemistry of $S_{N}2$ Substitutions 62
Contents

2.4.3 A Refined Transition State Model for the \(\text{S}_\text{N}^2 \) Reaction; Crossover Experiment and Endocyclic Restriction Test 63
2.4.4 Substituent Effects on \(\text{S}_\text{N}^2 \) Reactivity. .. 66

2.5 \(\text{S}_\text{N}^1 \) Reactions: Kinetic and Sterechemical Analysis; Substituent Effects on Reactivity .. 69
2.5.1 Energy Profile and Rate Law of \(\text{S}_\text{N}^1 \) Reactions; Steady State Approximation .. 69
2.5.2 Stereochemistry of \(\text{S}_\text{N}^1 \) Reactions; Ion Pairs 72
2.5.3 Solvent Effects on \(\text{S}_\text{N}^1 \) Reactivity ... 73
2.5.4 Substituent Effects on \(\text{S}_\text{N}^1 \) Reactivity. .. 76

2.6 When Do \(\text{S}_\text{N} \) Reactions at Saturated C Atoms Take Place According to the \(\text{S}_\text{N}^1 \) Mechanism and When Do They Take Place According to the \(\text{S}_\text{N}^2 \) Mechanism? ... 83

2.7 Getting by with Help from Friends, or a Least Neighbors: Neighboring Group Participation .. 83
2.7.1 Conditions for and Features of \(\text{S}_\text{N} \) Reactions with Neighboring Group Participation .. 83
2.7.2 Increased Rate through Neighboring Group Participation 85
2.7.3 Stereoselectivity through Neighboring Group Participation 86

2.8 \(\text{S}_\text{N}^i \) Reactions .. 89

2.9 Preparatively Useful \(\text{S}_\text{N}^2 \) Reactions: Alkylations 91

3 Electrophilic Additions to the \(\text{C}=>\text{C} \) Double Bond 103

3.1 The Concept of \textit{cis}- and \textit{trans}-Addition .. 104

3.2 Vocabulary of Stereochemistry and Stereoselective Synthesis I 104
3.2.1 Isomerism, Diastereomers/Enantiomers, Chirality 104
3.2.2 Chemoselectivity, Diastereoselectivity/Enantioselectivity, Stereoselectivity/Stereocurrencyence 106

3.3 Electrophilic Additions that Take Place Diastereoselectively as \textit{cis}-Additions .. 109
3.3.1 A Cycloaddition Forming Three-Membered Rings 109
3.3.2 Additions to \(\text{C}=>\text{C} \) Double Bonds That Are Related to Cycloadditions and Also Form Three-Membered Rings 114
3.3.3 \textit{cis}-Hydration of Alkenes via the Hydroboration/Oxidation/Hydrolysis Reaction Sequence 118
3.3.4 Heterogeneous Hydrogenation ... 126

3.4 Enantioselective \textit{cis}-Additions to \(\text{C}=>\text{C} \) Double Bonds 128
3.4.1 Vocabulary of Stereochemistry and Stereoselective Synthesis II: Topicity, Asymmetric Synthesis ... 128
3.4.2 Asymmetric Hydroboration of Achiral Alkenes 129
3.4.3 Thought Experiment I on the Hydroboration of Chiral Alkenes with Chiral Boranes: Mutual Kinetic Resolution 131
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.4</td>
<td>Thought Experiments II and III on the Hydroboration of Chiral Alkenes with Chiral Boranes: Reagent Control of Diastereoselectivity, Matched/Mismatched Pairs, Double Stereodifferentiation</td>
<td>133</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Thought Experiment IV on the Hydroboration of Chiral Olefins with Chiral Dialkylboranes: Kinetic Resolution</td>
<td>134</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Catalytic Asymmetric Synthesis: Sharpless Oxidations of Allylic alcohols</td>
<td>136</td>
</tr>
<tr>
<td>3.5</td>
<td>Additions that Take Place Diastereoselectively as \textit{trans}-Additions (Additions via Onium Intermediates)</td>
<td>142</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Addition of Halogens</td>
<td>144</td>
</tr>
<tr>
<td>3.5.2</td>
<td>The Formation of Halohydrins; Halolactonization and Haloetherification</td>
<td>144</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Solvomercuration of Alkenes: Hydration of C=C Double Bonds through Subsequent Reduction</td>
<td>148</td>
</tr>
<tr>
<td>3.6</td>
<td>Additions that Take Place or Can Take Place without Stereocontrol Depending on the Mechanism</td>
<td>150</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Additions via Carbenium Ion Intermediates</td>
<td>150</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Additions via “Carbanion” Intermediates</td>
<td>152</td>
</tr>
<tr>
<td>4</td>
<td>\textit{\beta}-Eliminations</td>
<td>157</td>
</tr>
<tr>
<td>4.1</td>
<td>Concepts of Elimination Reactions</td>
<td>157</td>
</tr>
<tr>
<td>4.1.1</td>
<td>The Concepts of (\alpha,\beta) and (1,\beta)-Elimination</td>
<td>157</td>
</tr>
<tr>
<td>4.1.2</td>
<td>The Terms \textit{syn}- and \textit{anti}-Elimination</td>
<td>158</td>
</tr>
<tr>
<td>4.1.3</td>
<td>When Are \textit{syn}- and \textit{anti}-Selective Eliminations Stereoselective?</td>
<td>159</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Formation of Regioisomeric Alkenes by (\beta)-Elimination: Saytzeff and Hofmann Product(s)</td>
<td>161</td>
</tr>
<tr>
<td>4.1.5</td>
<td>The Synthetic Value of Het(^1)/Het(^2) in Comparison to H/Het-Eliminations</td>
<td>163</td>
</tr>
<tr>
<td>4.2</td>
<td>(\beta)-Eliminations of H/Het via Cyclic Transition States</td>
<td>164</td>
</tr>
<tr>
<td>4.3</td>
<td>(\beta)-Eliminations of H/Het via Acyclic Transition States: The Mechanistic Alternatives</td>
<td>167</td>
</tr>
<tr>
<td>4.4</td>
<td>E2 Eliminations of H/Het and the E2/S(_{N2}) Competition</td>
<td>168</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Substrate Effects on the E2/S(_{N2}) Competition</td>
<td>169</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Base Effects on the E2/S(_{N2}) Competition</td>
<td>170</td>
</tr>
<tr>
<td>4.4.3</td>
<td>A Stereoelectronic Effect on the E2/S(_{N2}) Competition</td>
<td>171</td>
</tr>
<tr>
<td>4.4.4</td>
<td>The Regioselectivity of E2 Eliminations</td>
<td>173</td>
</tr>
<tr>
<td>4.4.5</td>
<td>The Stereoselectivity of E2 Eliminations</td>
<td>176</td>
</tr>
<tr>
<td>4.4.6</td>
<td>One-Pot Conversion of an Alcohol to an Alkene</td>
<td>177</td>
</tr>
<tr>
<td>4.5</td>
<td>E1 Elimination of H/Het from R({\text{S-en}})-X and the E1/S({N1}) Competition</td>
<td>179</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Energy Profiles and Rate Laws for E1 Eliminations</td>
<td>179</td>
</tr>
<tr>
<td>4.5.2</td>
<td>The Regioselectivity of E1 Eliminations</td>
<td>185</td>
</tr>
<tr>
<td>4.5.3</td>
<td>E1 Eliminations in Protecting Group Chemistry</td>
<td>187</td>
</tr>
<tr>
<td>4.6</td>
<td>E1(_{eb}) Eliminations</td>
<td>189</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Unimolecular E1(_{eb}) Eliminations: Energy Profile and Rate Law</td>
<td>189</td>
</tr>
</tbody>
</table>
4.6.2 Nonunimolecular E1cb Eliminations: Energy Profile and Rate Law . 190
4.6.3 Alkene-Forming Step of the Julia-Lythgoe Olefination 191
4.6.4 E1cb Eliminations in Protecting Group Chemistry 192
4.7 β-Eliminations of Het1/Het2 194
4.7.1 Fragmentation of b-Heterosubstituted Organometallic Compounds . 194
4.7.2 Peterson Olefination ... 195
4.7.3 Oxaphosphetane Fragmentation, Last Step of Wittig
and Horner–Wadsworth–Emmons Reactions 196

5 Substitution Reactions on Aromatic Compounds 201

5.1 Electrophilic Aromatic Substitutions via Sigma Complexes
(“Ar-SE Reactions”) .. 201
5.1.1 Mechanism: Substitution of H° vs ipso-Substitution 201
5.1.2 Thermodynamic Aspects of Ar-S反应s 205
5.1.3 Kinetic Aspects of Ar-S反应s: Reactivity and Regioselectivity
in Reactions of Electrophiles with Substituted Benzenes 209
5.2 Ar-S反应s via Sigma Complexes: Individual Reactions 215
5.2.1 Ar—Hal Bond Formation by Ar-S反应 215
5.2.2 Ar—SO3H Bond Formation by Ar-S反应 218
5.2.3 Ar—NO2 Bond Formation by Ar-S反应 219
5.2.4 Ar—N=N Bond Formation by Ar-S反应 223
5.2.5 Ar—Alkyl Bond Formations by Ar-S反应 225
5.2.6 Ar—C(OH) Bond Formation by Ar-S反应 and Associated
Secondary Reactions ... 228
5.2.7 Ar—C(=O) Bond Formation by Ar-S反应 229
5.2.8 Ar—C(=O)H Bond Formation through Ar-S反应 Reaction .. 233
5.3 Electrophilic Substitution Reactions on Metalated Aromatic Compounds .. 234
5.3.1 Electrophilic Substitution Reactions of ortho-Lithiated Benzene
and Naphthalene Derivatives 234
5.3.2 Electrophilic Substitution Reactions in Aryl Grignard and
Aryllithium Compounds That Are Accessible from Aryl Halides .. 237
5.3.3 Electrophilic Substitutions of Arylboronic Acids and
Aryboronic Esters ... 242
5.4 Nucleophilic Substitution Reactions of Aryldiazonium Salts 243
5.5 Nucleophilic Substitution Reactions via Meisenheimer Complexes .. 247
5.5.1 Mechanism ... 247
5.5.2 Examples of Reactions of Preparative Interest 249
5.6 Nucleophilic Aromatic Substitution via Arynes, cine Substitution 251

6 Nucleophilic Substitution Reactions at the Carboxyl Carbon 259

6.1 C=O-Containing Substrates and Their Reactions with Nucleophiles 259
6.2 Mechanisms, Rate Laws, and Rate of Nucleophilic Substitution Reactions
at the Carboxyl Carbon .. 261
6.2.1 Mechanism and Rate Laws of \(S_N \) Reactions at the Carboxyl Carbon .. 262
6.2.2 \(S_N \) Reactions at the Carboxyl Carbon: The Influence of Resonance Stabilization of the Reacting C=O Double Bond on the Reactivity of the Acylating Agent ... 268
6.2.3 \(S_N \) Reactions at the Carboxyl Carbon: The Influence of the Stabilization of the Tetrahedral Intermediate on the Reactivity ... 272
6.3 Activation of Carboxylic Acids and of Carboxylic Acid Derivatives 274
6.3.1 Activation of Carboxylic Acids and Carboxylic Acid Derivatives in Equilibrium Reactions .. 274
6.3.2 Conversion of Carboxylic Acids into Isolable Acylating Agents ... 275
6.3.3 Complete \textit{in Situ} Activation of Carboxylic Acids 278
6.4 Selected \(S_N \) Reactions of Heteroatom Nucleophiles at the Carboxyl Carbon .. 282
6.4.1 Hydrolysis and Alcoholysis of Esters 287
6.4.2 Lactone Formation from Hydroxyacids 293
6.4.3 Forming Peptide Bonds ... 296
6.4.4 \(S_N \) Reactions of Heteroatom Nucleophiles with Carbonic Acid Derivatives .. 300
6.5 \(S_N \) Reactions of Hydride Donors, Organometallics, and Heteroatom-Stabilized “Carbanions” on the Carboxyl Carbon 306
6.5.1 When Do Pure Acylations Succeed with Carboxylic Acid (Derivative)s, and When Are Alcohols Produced? 306
6.5.2 Acylation of Hydride Donors: Reduction of Carboxylic Acid Derivatives to Aldehydes .. 311
6.5.3 Acylation of Organometallic Compounds and Heteroatom-Stabilized “Carbanions” With Carboxylic Acid (Derivative)s:

 Synthesis of Ketones ... 312

6.5.4 Acylation of Organometallic Compounds and Heteroatom-Stabilized “Carbanions” with Carbonic Acid Derivatives:

 Synthesis of Carboxylic Acid Derivatives 317

7 Carboxylic Compounds, Nitriles, and Their Interconversion 321
7.1 Preparation of Nitriles from Carboxylic Acid(Derivative)s 322
7.2 Transformation of Nitriles and Heteroatom Nucleophiles to Carboxylic Acid (Derivative)s .. 328

8 Carbonic Acid Derivatives and Heterocumulenes and Their Interconversion .. 339
8.1 Preparation of Heterocumulenes from Carbonic Acid (Derivatives) 341
8.2 Transformation of Heterocumulenes and Heteroatom Nucleophiles into Carbonic Acid Derivatives .. 348
8.3 Interconversions of Carbonic Acid Derivatives via Heterocumulenes as Intermediates .. 356
9 Additions of Heteroatom Nucleophiles to Carbonyl Compounds and Subsequent Reactions—Condensations of Heteroatom Nucleophiles with Carbonyl Compounds 359

9.1 Additions of Heteroatom Nucleophiles or Hydrocyanic Acid to Carbonyl Compounds ... 359
9.1.1 On the Equilibrium Position of Addition Reactions of Heteroatom Nucleophiles to Carbonyl Compounds .. 360
9.1.2 Hemiacetal Formation ... 361
9.1.3 Formation of Cyanohydrins and a-Aminonitriles 366
9.1.4 Oligomerization of Aldehydes—Polymerization of Formaldehyde. . 369

9.2 Addition of Heteroatom Nucleophiles to Carbonyl Compounds in Combination with Subsequent S_N^1 Reactions of the Primary Product: Acetalizations ... 371
9.2.1 Mechanism .. 371
9.2.2 Formation of O,O-Acetals ... 373
9.2.3 Formation of S,S-Acetals ... 382
9.2.4 Formation of N,N-Acetals .. 383

9.3 Addition of Nitrogen Nucleophiles to Carbonyl Compounds in Combination with Subsequent E_1 Eliminations of the Primary Product: Condensation Reactions .. 386

10 Addition of Hydride Donors and of Organometallic Compounds to Carbonyl Compounds ... 397

10.1 Suitable Hydride Donors and Organometallic Compounds; the Structure of Organolithium Compounds and Grignard Reagents 397
10.2 Chemoselectivity of the Addition of Hydride Donors to Carbonyl Compounds ... 403
10.3 Diastereoselectivity of the Addition of Hydride Donors to Carbonyl Compounds ... 405
10.3.1 Diastereoselectivity of the Addition of Hydride Donors to Cyclic Ketones ... 406
10.3.2 Diastereoselectivity of the Addition of Hydride Donors to α-Chiral Acyclic Carbonyl Compounds ... 411
10.3.3 Diastereoselectivity of the Addition of Hydride Donors to β-Chiral Acyclic Carbonyl Compounds ... 419
10.4 Enantioselective Addition of Hydride Donors to Carbonyl Compounds ... 422
10.5 Addition of Organometallic Compounds to Carbonyl Compounds ... 426
10.5.1 Simple Addition Reactions of Organometallic Compounds ... 426
10.5.2 Enantioselective Addition of Organozinc Compounds to Carbonyl Compounds: Chiral Amplification ... 437
10.5.3 Diastereoselective Addition of Organometallic Compounds to Carbonyl Compounds ... 440
10.6 1,4-Additions of Organometallic Compounds to \(\alpha,\beta \)-Unsaturated Ketones; Structure of Copper-Containing Organometallic Compounds

11 Conversion of Phosphorus- or Sulfur-Stabilized C Nucleophiles with Carbonyl Compounds: Addition-Induced Condensations

11.1 Condensation of Phosphonium Ylides with Carbonyl Compounds: Wittig Reaction
11.1.1 Bonding in Phosphonium Ylides
11.1.2 Nomenclature and Preparation of Phosphonium Ylides
11.1.3 Mechanism of the Wittig Reaction

11.2 Wittig–Horner Reaction

11.3 Horner–Wadsworth–Emmons Reaction
11.3.1 Horner–Wadsworth–Emmons Reactions Between Achiral Substrates
11.3.2 Horner–Wadsworth–Emmons Reactions between Chiral Substrates: A Potpourri of Stereochemical Specialties

11.4 (Marc) Julia–Lythgoe- and (Sylvestre) Julia–Kocienski Olefination

12 The Chemistry of Enols and Enamines

12.1 Keto-Enol Tautomerism; Enol Content of Carbonyl and Carboxyl Compounds
12.2 \(\alpha,\beta \)-Functionalization of Carbonyl and Carboxyl Compounds via Tautomeric Enols
12.3 \(\alpha,\beta \)-Functionalization of Ketones via Their Enamines
12.4 \(\alpha,\beta \)-Functionalization of Enol Ethers and Silyl Enol Ethers

13 Chemistry of the Alkaline Earth Metal Enolates

13.1 Basic Considerations
13.1.1 Notation and Structure of Enolates
13.1.2 Preparation of Enolates by Deprotonation
13.1.3 Other Methods for the Generation of Enolates
13.1.4 Survey of Reactions between Electrophiles and Enolates and the Issue of Ambidoselectivity

13.2 Alkylation of Quantitatively Prepared Enolates and Aza-enolates; Chain-Elongating Syntheses of Carbonyl Compounds and Carboxylic Acid Derivatives
13.2.1 Chain-Elongating Syntheses of Carbonyl Compounds
13.2.2 Chain-Elongating Syntheses of Carboxylic Acid Derivatives

13.3 Hydroxalkylation of Enolates with Carbonyl Compounds ("Aldol Addition"): Synthesis of \(\beta \)-Hydroxyketones and \(\beta \)-Hydroxyesters
13.3.1 Driving Force of Aldol Additions and Survey of Reaction Products
13.3.2 Stereocontrol
13.4 Condensation of Enolates with Carbonyl Compounds: Synthesis of Michael Acceptors
13.4.1 Aldol Condensations
13.4.2 Knoevenagel Reaction
13.5 Acylation of Enolates
13.5.1 Acylation of Ester Enolates
13.5.2 Acylation of Ketone Enolates
13.5.3 Acylation of the Enolates of Active-Methylene Compounds
13.6 Michael Additions of Enolates
13.6.1 Simple Michael Additions
13.6.2 Tandem Reactions Consisting of Michael Addition and Consecutive Reactions
14 Rearrangements
14.1 Nomenclature of Sigmatropic Shifts
14.2 Molecular Origins for the Occurrence of [1,2]-Rearrangements
14.3 [1,2]-Rearrangements in Species with a Valence Electron Sextet
14.3.1 [1,2]-Rearrangements of Carbenium Ions
14.3.2 [1,2]-Rearrangements in Carbenes or Carbenoids
14.4 [1,2]-Rearrangements without the Occurrence of a Sextet Intermediate
14.4.1 Hydroperoxide Rearrangements
14.4.2 Baeyer–Villiger Rearrangements
14.4.3 Oxidation of Organoborane Compounds
14.4.4 Beckmann Rearrangement
14.4.5 Curtius Degradation
14.5 Claisen Rearrangement
14.5.1 Classical Claisen Rearrangement
14.5.2 Ireland-Claisen Rearrangements
15 Thermal Cycloadditions
15.1 Driving Force and Feasibility of One-Step [4+2]- and [2+2]-Cycloadditions
15.2 Transition State Structures of Selected One-Step [4+2]- and [2+2]-Cycloadditions
15.2.1 Stereostructure of the Transition States of One-Step [4+2]-Cycloadditions
15.2.2 Frontier Orbital Interactions in the Transition States of One-Step [4+2]-Cycloadditions
15.2.3 Frontier Orbital Interactions in the Transition States of the Unknown One-Step Cycloadditions of Alkenes or Alkynes to Alkenes
15.2.4 Frontier Orbital Interactions in the Transition State of One-Step [2+2]-Cycloadditions Involving Ketenes
15.3	Diels–Alder Reactions	654
15.3.1	Stereoselectivity of Diels–Alder Reactions	655
15.3.2	Substituent Effects on Reaction Rates of Diels–Alder Reactions	661
15.3.3	Regioselectivity of Diels–Alder Reactions	665
15.3.4	Simple Diastereoselectivity of Diels–Alder Reactions	668
15.4	[2+2]-Cycloadditions with Dichloroketene	671
15.5	1,3-Dipolar Cycloadditions	674
15.5.1	1,3-Dipoles	674
15.5.2	Frontier Orbital Interactions in the Transition States of One-Step 1,3-Dipolar Cycloadditions; Sustmann Classification	675
15.5.3	1,3-Dipolar Cycloadditions of Diazoalkanes	677
15.5.4	1,3-Dipolar Cycloadditions of Nitrile Oxides	680
15.5.5	1,3-Dipolar Cycloadditions and 1,3-Dipolar Cycloreversions as Steps in the Ozonolysis of Alkenes	683
15.5.6	A Tricky Reaction of Inorganic Azide	685
16	Transition Metal-Mediated Alkenylations, Arylations, and Alkynylations	691
16.1	Alkenylation and Arylation of Gilman Cuprates	692
16.2	Arylation and Alkenylation of Neutral Organocopper Compounds I	694
16.3	Alkenylation and Arylation of Grignard Compounds (Kumada Coupling)	701
16.4	Palladium-Catalyzed Alkenylations and Arylations of Organometallic Compounds	705
16.4.1	A Prelude: Preparation of Haloalkenes and Alkenylboronic Acid Derivatives, Important Building Blocks for Palladium-Mediated C,C Couplings; Carbocupration of Alkynes	705
16.4.2	Alkenylation and Arylation of Boron-Bound Groups (Suzuki Coupling)	709
16.4.3	Alkenylation and Arylation of Organozinc Compounds (Negishi Couplings) and of Functionalized Organozinc Compounds	714
16.4.4	Alkenylation and Arylation of Tin-bound Groups (Stille Reaction)	717
16.4.5	Arylations, Alkenylations and Alkynylations of Neutral Organocopper Compounds II	721
16.5	Heck Reactions	726
17	Oxidations and Reductions	737
17.1	Oxidation Numbers in Organic Chemical Compounds, and Organic Chemical Redox Reactions	737
17.2	Cross-References to Redox Reactions Already Discussed in Chapters 1–16	742
17.3	Oxidations	748
17.3.1	Oxidations in the Series Alcohol → Aldehyde → Carboxylic Acid	748
17.3.2	Oxidative Cleavages	758
17.3.3	Oxidations at Heteroatoms	775
17.4 Reductions .. 777
17.4.1 Reductions $R_{sp^3} - X \rightarrow R_{sp^3} - H$ or $R_{sp^3} - X \rightarrow R_{sp^3} - M$ 778
17.4.2 One-Electron Reductions of Carbonyl Compounds and Esters;
 Reductive Coupling 786
17.4.3 Reductions of Carboxylic Acid Derivatives to Alcohols or Amines 795
17.4.4 Reductions of Carboxylic Acid Derivatives to Aldehydes 800
17.4.5 Reductions of Carbonyl Compounds to Alcohols 800
17.4.6 Reductions of Carbonyl Compounds to Hydrocarbons 800
17.4.7 Hydrogenation of Alkenes 806
17.4.8 Reductions of Aromatic Compounds and Alkynes 815
17.4.9 The Reductive Step of the Julia–Lythgoe Olefination 819

Subject Index ... 827