Contents

1 Radical Substitution Reactions at the Saturated C Atom 1

1.1 Bonding and Preferred Geometries in Carbon Radicals, Carbenium Ions and Carbanions 2
 1.1.1 Preferred Geometries 3
 1.1.2 Bonding 4

1.2 Stability of Radicals 5
 1.2.1 Reactive Radicals 6
 1.2.2 Unreactive Radicals 10

1.3 Relative Rates of Analogous Radical Reactions 12
 1.3.1 The Bell–Evans–Polanyi Principle 12
 1.3.2 The Hammond Postulate 14

1.4 Radical Substitution Reactions: Chain Reactions 15

1.5 Radical Initiators 17

1.6 Radical Chemistry of Alkylmercury(II) Hydrides 18

1.7 Radical Halogenation of Hydrocarbons 21
 1.7.1 Simple and Multiple Chlorinations 21
 1.7.2 Regioselectivity of Radical Chlorinations 23
 1.7.3 Regioselectivity of Radical Brominations Compared to Chlorinations 25
 1.7.4 Rate Law for Radical Halogenations; Reactivity/Selectivity Principle and the Road to Perdition 27
 1.7.5 Chemoselectivity of Radical Brominations 29
 1.7.6 Radical Chain Chlorination Using Sulfuryl Chloride 35

1.8 Autoxidations 38

1.9 Synthetically Useful Radical Substitution Reactions 41
 1.9.1 Simple Reductions 41
 1.9.2 Formation of 5-Hexenyl Radicals: Competing Cyclopentane Formation 44

1.10 Diazene Fragmentations as Novel Alkane Syntheses 46

2 Nucleophilic Substitution Reactions at the Saturated C Atom 53

2.1 Nucleophiles and Electrophiles; Leaving Groups 53

2.2 Good and Poor Nucleophiles 54

2.3 Leaving Groups: Good, Bad and Ugly 58

2.4 S_N2 Reactions: Kinetic and Stereochemical Analysis—Substituent Effects on Reactivity 60
 2.4.1 Energy Profile and Rate Law for S_N2 Reactions: Reaction Order 60
 2.4.2 Stereochemistry of S_N2 Substitutions 62
2.4.3 A Refined Transition State Model for the S_N^2 Reaction; Crossover Experiment and Endocyclic Restriction Test 63
2.4.4 Substituent Effects on S_N^2 Reactivity. 66
2.5 S_N^1 Reactions: Kinetic and Stereochemical Analysis; Substituent Effects on Reactivity .. 69
 2.5.1 Energy Profile and Rate Law of S_N^1 Reactions; Steady State Approximation ... 69
 2.5.2 Stereochemistry of S_N^1 Reactions; Ion Pairs 72
 2.5.3 Solvent Effects on S_N^1 Reactivity 73
 2.5.4 Substituent Effects on S_N^1 Reactivity. 76
2.6 When Do S_N Reactions at Saturated C Atoms Take Place According to the S_N^1 Mechanism and When Do They Take Place According to the S_N^2 Mechanism? ... 83
2.7 Getting by with Help from Friends, or a Least Neighbors: Neighboring Group Participation ... 83
 2.7.1 Conditions for and Features of S_N Reactions with Neighboring Group Participation ... 83
 2.7.2 Increased Rate through Neighboring Group Participation 85
 2.7.3 Stereoselectivity through Neighboring Group Participation 86
2.8 S_N^i Reactions ... 89
2.9 Preparatively Useful S_N^2 Reactions: Alkylations 91

3 Electrophilic Additions to the C≡C Double Bond 103
 3.1 The Concept of cis- and trans-Addition 104
 3.2 Vocabulary of Stereochemistry and Stereoselective Synthesis I ... 104
 3.2.1 Isomerism, Diastereomers/Enantiomers, Chirality 104
 3.2.2 Chemoselectivity, Diastereoselectivity/Enantioselectivity, Stereoselectivity/Stereocircularity 106
 3.3 Electrophilic Additions that Take Place Diastereoselectively as cis-Additions ... 109
 3.3.1 A Cycloaddition Forming Three-Membered Rings 109
 3.3.2 Additions to C≡C Double Bonds That Are Related to Cycloadditions and Also Form Three-Membered Rings 114
 3.3.3 cis-Hydration of Alkenes via the Hydroboration/Oxidation/Hydrolysis Reaction Sequence 118
 3.3.4 Heterogeneous Hydrogenation 126
 3.4 Enantioselective cis-Additions to C≡C Double Bonds 128
 3.4.1 Vocabulary of Stereochemistry and Stereoselective Synthesis II: Topicity, Asymmetric Synthesis 128
 3.4.2 Asymmetric Hydroboration of Achiral Alkenes 129
 3.4.3 Thought Experiment I on the Hydroboration of Chiral Alkenes with Chiral Boranes: Mutual Kinetic Resolution 131
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.4 Thought Experiments II and III on the Hydroboration of Chiral</td>
<td>133</td>
</tr>
<tr>
<td>Alkenes with Chiral Boranes: Reagent Control of Diastereoselectivity,</td>
<td></td>
</tr>
<tr>
<td>Matched/Mismatched Pairs, Double Stereodifferentiation</td>
<td></td>
</tr>
<tr>
<td>3.4.5 Thought Experiment IV on the Hydroboration of Chiral Olefins</td>
<td>134</td>
</tr>
<tr>
<td>with Chiral Dialkylboranes: Kinetic Resolution</td>
<td></td>
</tr>
<tr>
<td>3.4.6 Catalytic Asymmetric Synthesis: Sharpless Oxidations of Allylic</td>
<td>136</td>
</tr>
<tr>
<td>alcohols</td>
<td></td>
</tr>
<tr>
<td>3.5 Additions that Take Place Diastereoselectively as trans-Additions</td>
<td></td>
</tr>
<tr>
<td>(Additions via Onium Intermediates)</td>
<td>142</td>
</tr>
<tr>
<td>3.5.1 Addition of Halogens</td>
<td>144</td>
</tr>
<tr>
<td>3.5.2 The Formation of Halohydrins; Halolactonization and</td>
<td></td>
</tr>
<tr>
<td>Haloetherification</td>
<td>144</td>
</tr>
<tr>
<td>3.5.3 Solvomercuration of Alkenes: Hydration of C=C Double Bonds</td>
<td>148</td>
</tr>
<tr>
<td>through Subsequent Reduction</td>
<td></td>
</tr>
<tr>
<td>3.6 Additions that Take Place or Can Take Place without Stereocontrol</td>
<td></td>
</tr>
<tr>
<td>Depending on the Mechanism</td>
<td>150</td>
</tr>
<tr>
<td>3.6.1 Additions via Carbenium Ion Intermediates</td>
<td>150</td>
</tr>
<tr>
<td>3.6.2 Additions via “Carbanion” Intermediates</td>
<td>152</td>
</tr>
<tr>
<td>4 β-Eliminations</td>
<td>157</td>
</tr>
<tr>
<td>4.1 Concepts of Elimination Reactions</td>
<td></td>
</tr>
<tr>
<td>4.1.1 The Concepts of α,β- and 1,n-Elimination</td>
<td>157</td>
</tr>
<tr>
<td>4.1.2 The Terms syn- and anti-Elimination</td>
<td>158</td>
</tr>
<tr>
<td>4.1.3 When Are syn- and anti-Selective Eliminations Stereoselective?</td>
<td>159</td>
</tr>
<tr>
<td>4.1.4 Formation of Regiosomeric Alkenes by β-Elimination:</td>
<td></td>
</tr>
<tr>
<td>Saytzeff and Hofmann Product(s)</td>
<td>161</td>
</tr>
<tr>
<td>4.1.5 The Synthetic Value of Het¹/Het² in Comparison to</td>
<td></td>
</tr>
<tr>
<td>H/Het-Eliminations</td>
<td>163</td>
</tr>
<tr>
<td>4.2 β-Eliminations of H/Het via Cyclic Transition States</td>
<td>164</td>
</tr>
<tr>
<td>4.3 β-Eliminations of H/Het via Acyclic Transition States:</td>
<td></td>
</tr>
<tr>
<td>The Mechanistic Alternatives</td>
<td>167</td>
</tr>
<tr>
<td>4.4 E2 Eliminations of H/Het and the E2/Sₙ₂ Competition</td>
<td>168</td>
</tr>
<tr>
<td>4.4.1 Substrate Effects on the E2/Sₙ₂ Competition</td>
<td>169</td>
</tr>
<tr>
<td>4.4.2 Base Effects on the E2/Sₙ₂ Competition</td>
<td>170</td>
</tr>
<tr>
<td>4.4.3 A Stereoelectronic Effect on the E2/Sₙ₂ Competition</td>
<td>171</td>
</tr>
<tr>
<td>4.4.4 The Regioselectivity of E2 Eliminations</td>
<td>173</td>
</tr>
<tr>
<td>4.4.5 The Stereoselectivity of E2 Eliminations</td>
<td>176</td>
</tr>
<tr>
<td>4.4.6 One-Pot Conversion of an Alcohol to an Alkene</td>
<td>177</td>
</tr>
<tr>
<td>4.5 E1 Elimination of H/Het from R⁻⁻‥\scalebox{0.5}{\hbox{\parbox{\dimexpr\linewidth-2\parindent}{...}}}}\scalebox{1}{\parbox{\dimexpr\linewidth-2\parindent}{...}}\scalebox{0.5}{\hbox{\parbox{\dimexpr\linewidth-2\parindent}{...}}}</td>
<td>179</td>
</tr>
<tr>
<td>4.5.1 Energy Profiles and Rate Laws for E1 Eliminations</td>
<td>179</td>
</tr>
<tr>
<td>4.5.2 The Regioselectivity of E1 Eliminations</td>
<td>185</td>
</tr>
<tr>
<td>4.5.3 E1 Eliminations in Protecting Group Chemistry</td>
<td>187</td>
</tr>
<tr>
<td>4.6 E₁cb Eliminations</td>
<td>189</td>
</tr>
<tr>
<td>4.6.1 Unimolecular E₁cb Eliminations: Energy Profile and Rate Law</td>
<td>189</td>
</tr>
</tbody>
</table>
4.6.2 Nonunimolecular E1cb Eliminations: Energy Profile and Rate Law . 190
4.6.3 Alkene-Forming Step of the Julia-Lythgoe Olefination 191
4.6.4 E1cb Eliminations in Protecting Group Chemistry 192

4.7 β-Eliminations of Het1/Het2 . 194
4.7.1 Fragmentation of b-Heterosubstituted Organometallic Compounds . 194
4.7.2 Peterson Olefination . 195
4.7.3 Oxaphosphetane Fragmentation, Last Step of Wittig and Horner–Wadsworth–Emmons Reactions. 196

5 Substitution Reactions on Aromatic Compounds . 201
5.1 Electrophilic Aromatic Substitutions via Sigma Complexes
("Ar-SE Reactions"). ... 201
5.1.1 Mechanism: Substitution of H° vs ipso-Substitution. ... 201
5.1.2 Thermodynamic Aspects of Ar-S+ Reactions . 205
5.1.3 Kinetic Aspects of Ar-S+ Reactions: Reactivity and Regioselectivity in Reactions of Electrophiles with Substituted Benzenes . 209

5.2 Ar-S+ Reactions via Sigma Complexes: Individual Reactions 215
5.2.1 Ar—Hal Bond Formation by Ar-S+ Reaction . 215
5.2.2 Ar—SO3H Bond Formation by Ar-S+ Reaction . 218
5.2.3 Ar—NO2 Bond Formation by Ar-S+ Reaction . 219
5.2.4 Ar—N=N Bond Formation by Ar-S+ Reaction . 223
5.2.5 Ar—Alkyl Bond Formations by Ar-S+ Reaction . 225
5.2.6 Ar—C(OH) Bond Formation by Ar-S+ Reactions and Associated Secondary Reactions ... 228
5.2.7 Ar—C(=O) Bond Formation by Ar-S+ Reaction . 229
5.2.8 Ar—C(=O)H Bond Formation through Ar-S+ Reaction . 233

5.3 Electrophilic Substitution Reactions on Metalated Aromatic Compounds . 234
5.3.1 Electrophilic Substitution Reactions of ortho-Lithiated Benzene and Naphthalene Derivatives 234
5.3.2 Electrophilic Substitution Reactions in Aryl Grignard and Aryllithium Compounds That Are Accessible from Aryl Halides . 237
5.3.3 Electrophilic Substitutions of Arylboronic Acids and Arylboronic Esters ... 242

5.4 Nucleophilic Substitution Reactions of Aryldiazonium Salts . 243
5.5 Nucleophilic Substitution Reactions via Meisenheimer Complexes . 247
5.5.1 Mechanism .. 247
5.5.2 Examples of Reactions of Preparative Interest .. 249

5.6 Nucleophilic Aromatic Substitution via Arynes, cine Substitution . 251

6 Nucleophilic Substitution Reactions at the Carboxyl Carbon . 259
6.1 C=O-Containing Substrates and Their Reactions with Nucleophiles . 259
6.2 Mechanisms, Rate Laws, and Rate of Nucleophilic Substitution Reactions at the Carboxyl Carbon .. 261
6.2.1 Mechanism and Rate Laws of S_N Reactions at the Carboxyl Carbon ... 262
6.2.2 S_N Reactions at the Carboxyl Carbon: The Influence of Resonance Stabilization of the Reacting C=O Double Bond on the Reactivity of the Acylating Agent ... 268
6.2.3 S_N Reactions at the Carboxyl Carbon: The Influence of the Stabilization of the Tetrahedral Intermediate on the Reactivity ... 272
6.3 Activation of Carboxylic Acids and of Carboxylic Acid Derivatives ... 274
 6.3.1 Activation of Carboxylic Acids and Carboxylic Acid Derivatives in Equilibrium Reactions 274
 6.3.2 Conversion of Carboxylic Acids into Isolable Acylating Agents ... 275
 6.3.3 Complete in Situ Activation of Carboxylic Acids .. 278
6.4 Selected S_N Reactions of Heteroatom Nucleophiles at the Carboxyl Carbon .. 282
 6.4.1 Hydrolysis and Alcoholysis of Esters .. 287
 6.4.2 Lactone Formation from Hydroxyacrylic Acids .. 293
 6.4.3 Forming Peptide Bonds ... 296
 6.4.4 S_N Reactions of Heteroatom Nucleophiles with Carbonic Acid Derivatives ... 300
6.5 S_N Reactions of Hydride Donors, Organometallics, and Heteroatom-Stabilized “Carbanions” on the Carboxyl Carbon .. 306
 6.5.1 When Do Pure Acylations Succeed with Carboxylic Acid (Derivative)s, and When Are Alcohols Produced? .. 306
 6.5.2 Acylation of Hydride Donors: Reduction of Carboxylic Acid Derivatives to Aldehydes 311
 6.5.3 Acylation of Organometallic Compounds and Heteroatom-Stabilized “Carbanions” With Carboxylic Acid (Derivative)s: Synthesis of Ketones ... 312
 6.5.4 Acylation of Organometallic Compounds and Heteroatom-Stabilized “Carbanions” with Carbonic Acid Derivatives: Synthesis of Carboxylic Acid Derivatives 317

7 Carboxylic Compounds, Nitriles, and Their Interconversion ... 321
 7.1 Preparation of Nitriles from Carboxylic Acid(Derivative)s. ... 322
 7.2 Transformation of Nitriles and Heteroatom Nucleophiles to Carboxylic Acid (Derivative)s. 328

8 Carbonic Acid Derivatives and Heterocumulenes and Their Interconversion 339
 8.1 Preparation of Heterocumulenes from Carbonic Acid (Derivatives) .. 341
 8.2 Transformation of Heterocumulenes and Heteroatom Nucleophiles into Carbonic Acid Derivatives 348
 8.3 Interconversions of Carbonic Acid Derivatives via Heterocumulenes as Intermediates 356
9 Additions of Heteroatom Nucleophiles to Carbonyl Compounds and Subsequent Reactions—Condensations of Heteroatom Nucleophiles with Carbonyl Compounds

9.1 Additions of Heteroatom Nucleophiles or Hydrocyanic Acid to Carbonyl Compounds

- **On the Equilibrium Position of Addition Reactions of Heteroatom Nucleophiles to Carbonyl Compounds**
 - Page 360
- **Hemiacetal Formation**
 - Page 361
- **Formation of Cyanohydrins and a-Aminonitriles**
 - Page 366
- **Oligomerization of Aldehydes—Polymerization of Formaldehyde**
 - Page 369

9.2 Addition of Heteroatom Nucleophiles to Carbonyl Compounds in Combination with Subsequent SN1 Reactions of the Primary Product: Acetalizations

- **Mechanism**
 - Page 371
- **Formation of O,O-Acetals**
 - Page 373
- **Formation of S,S-Acetals**
 - Page 382
- **Formation of N,N-Acetals**
 - Page 383

9.3 Addition of Nitrogen Nucleophiles to Carbonyl Compounds in Combination with Subsequent E1 Eliminations of the Primary Product: Condensation Reactions

10 Addition of Hydride Donors and of Organometallic Compounds to Carbonyl Compounds

10.1 Suitable Hydride Donors and Organometallic Compounds; the Structure of Organolithium Compounds and Grignard Reagents

- Page 397

10.2 Chemoselectivity of the Addition of Hydride Donors to Carbonyl Compounds

- Page 403

10.3 Diastereoselectivity of the Addition of Hydride Donors to Carbonyl Compounds

- **Diastereoselectivity of the Addition of Hydride Donors to Cyclic Ketones**
 - Page 406
- **Diastereoselectivity of the Addition of Hydride Donors to α-Chiral Acyclic Carbonyl Compounds**
 - Page 411
- **Diastereoselectivity of the Addition of Hydride Donors to β-Chiral Acyclic Carbonyl Compounds**
 - Page 419

10.4 Enantioselective Addition of Hydride Donors to Carbonyl Compounds

10.5 Addition of Organometallic Compounds to Carbonyl Compounds

- **Simple Addition Reactions of Organometallic Compounds**
 - Page 426
- **Enantioselective Addition of Organozinc Compounds to Carbonyl Compounds: Chiral Amplification**
 - Page 437
- **Diastereoselective Addition of Organometallic Compounds to Carbonyl Compounds**
 - Page 440
10.6 1,4-Additions of Organometallic Compounds to \(\alpha,\beta \)-Unsaturated Ketones; Structure of Copper-Containing Organometallic Compounds
443

11 Conversion of Phosphorus- or Sulfur-Stabilized C Nucleophiles with Carbonyl Compounds: Addition-Induced Condensations
457

11.1 Condensation of Phosphonium Ylides with Carbonyl Compounds:
- **Wittig Reaction**
 457
 - **11.1.1 Bonding in Phosphonium Ylides**
 457
 - **11.1.2 Nomenclature and Preparation of Phosphonium Ylides**
 458
 - **11.1.3 Mechanism of the Wittig Reaction**
 460

11.2 Wittig–Horner Reaction
467

11.3 Horner–Wadsworth–Emmons Reaction
471
 - **11.3.1 Horner–Wadsworth–Emmons Reactions Between Achiral Substrates**
 471
 - **11.3.2 Horner–Wadsworth–Emmons Reactions between Chiral Substrates:**
 A Potpourri of Stereochemical Specialties
 475

11.4 (Marc) Julia–Lythgoe- and (Sylvestre) Julia–Kocienski Olefination
482

12 The Chemistry of Enols and Enamines
487

12.1 Keto-Enol Tautomerism; Enol Content of Carbonyl and Carboxyl Compounds
489

12.2 \(\alpha \)-Functionalization of Carbonyl and Carboxyl Compounds via Tautomeric Enols
493

12.3 \(\alpha \)-Functionalization of Ketones via Their Enamines
505

12.4 \(\alpha \)-Functionalization of Enol Ethers and Silyl Enol Ethers
512

13 Chemistry of the Alkaline Earth Metal Enolates
519

13.1 Basic Considerations
519
 - **13.1.1 Notation and Structure of Enolates**
 519
 - **13.1.2 Preparation of Enolates by Deprotonation**
 523
 - **13.1.3 Other Methods for the Generation of Enolates**
 538
 - **13.1.4 Survey of Reactions between Electrophiles and Enolates and the Issue of Ambidoselectivity**
 540

13.2 Alkylation of Quantitatively Prepared Enolates and Aza-enolates; Chain-Elongating Syntheses of Carbonyl Compounds and Carboxylic Acid Derivatives
543
 - **13.2.1 Chain-Elongating Syntheses of Carbonyl Compounds**
 543
 - **13.2.2 Chain-Elongating Syntheses of Carboxylic Acid Derivatives**
 551

13.3 Hydroxyalkylation of Enolates with Carbonyl Compounds (“Aldol Addition”):
- **Synthesis of \(\beta \)-Hydroxyketones and \(\beta \)-Hydroxyesters**
 558
 - **13.3.1 Driving Force of Aldol Additions and Survey of Reaction Products**
 558
 - **13.3.2 Stereocontrol**
 560
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4</td>
<td>Condensation of Enolates with Carbonyl Compounds: Synthesis of Michael Acceptors</td>
<td>565</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Aldol Condensations</td>
<td>565</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Knoevenagel Reaction</td>
<td>571</td>
</tr>
<tr>
<td>13.5</td>
<td>Acylation of Enolates</td>
<td>575</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Acylation of Ester Enolates</td>
<td>575</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Acylation of Ketone Enolates</td>
<td>579</td>
</tr>
<tr>
<td></td>
<td>Acylation of the Enolates of Active-Methylene Compounds</td>
<td>582</td>
</tr>
<tr>
<td>13.6</td>
<td>Michael Additions of Enolates</td>
<td>584</td>
</tr>
<tr>
<td>13.6.1</td>
<td>Simple Michael Additions</td>
<td>584</td>
</tr>
<tr>
<td>13.6.2</td>
<td>Tandem Reactions Consisting of Michael Addition and Consecutive Reactions</td>
<td>586</td>
</tr>
<tr>
<td>14</td>
<td>Rearrangements</td>
<td>595</td>
</tr>
<tr>
<td>14.1</td>
<td>Nomenclature of Sigmatropic Shifts</td>
<td>595</td>
</tr>
<tr>
<td>14.2</td>
<td>Molecular Origins for the Occurrence of [1,2]-Rearrangements</td>
<td>596</td>
</tr>
<tr>
<td>14.3</td>
<td>[1,2]-Rearrangements in Species with a Valence Electron Sextet</td>
<td>598</td>
</tr>
<tr>
<td>14.3.1</td>
<td>[1,2]-Rearrangements of Carbenium Ions</td>
<td>598</td>
</tr>
<tr>
<td>14.3.2</td>
<td>[1,2]-Rearrangements in Carbenes or Carbenoids</td>
<td>615</td>
</tr>
<tr>
<td>14.4</td>
<td>[1,2]-Rearrangements without the Occurrence of a Sextet Intermediate</td>
<td>622</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Hydroperoxide Rearrangements</td>
<td>623</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Baeyer–Villiger Rearrangements</td>
<td>624</td>
</tr>
<tr>
<td>14.4.3</td>
<td>Oxidation of Organoborane Compounds</td>
<td>627</td>
</tr>
<tr>
<td>14.4.4</td>
<td>Beckmann Rearrangement</td>
<td>629</td>
</tr>
<tr>
<td>14.4.5</td>
<td>Curtius Degradation</td>
<td>630</td>
</tr>
<tr>
<td>14.5</td>
<td>Claisen Rearrangement</td>
<td>632</td>
</tr>
<tr>
<td>14.5.1</td>
<td>Classical Claisen Rearrangement</td>
<td>632</td>
</tr>
<tr>
<td>14.5.2</td>
<td>Ireland-Claisen Rearrangements</td>
<td>634</td>
</tr>
<tr>
<td>15</td>
<td>Thermal Cycloadditions</td>
<td>643</td>
</tr>
<tr>
<td>15.1</td>
<td>Driving Force and Feasibility of One-Step [4+2]- and [2+2]-Cycloadditions</td>
<td>643</td>
</tr>
<tr>
<td>15.2</td>
<td>Transition State Structures of Selected One-Step [4+2]- and [2+2]-Cycloadditions</td>
<td>644</td>
</tr>
<tr>
<td>15.2.1</td>
<td>Stereostructure of the Transition States of One-Step [4+2]-Cycloadditions</td>
<td>644</td>
</tr>
<tr>
<td>15.2.2</td>
<td>Frontier Orbital Interactions in the Transition States of One-Step [4+2]-Cycloadditions</td>
<td>645</td>
</tr>
<tr>
<td>15.2.3</td>
<td>Frontier Orbital Interactions in the Transition States of the Unknown One-Step Cycloadditions of Alkenes or Alkynes to Alkenes</td>
<td>651</td>
</tr>
<tr>
<td>15.2.4</td>
<td>Frontier Orbital Interactions in the Transition State of One-Step [2+2]-Cycloadditions Involving Ketenes</td>
<td>652</td>
</tr>
</tbody>
</table>
15.3 Diels–Alder Reactions .. 654
15.3.1 Stereoselectivity of Diels–Alder Reactions 655
15.3.2 Substituent Effects on Reaction Rates of Diels–Alder Reactions 661
15.3.3 Regioselectivity of Diels–Alder Reactions 665
15.3.4 Simple Diastereoselectivity of Diels–Alder Reactions 668
15.4 [2+2]-Cycloadditions with Dichloroketene 671
15.5 1,3-Dipolar Cycloadditions ... 674
15.5.1 1,3-Dipoles .. 674
15.5.2 Frontier Orbital Interactions in the Transition States of One-Step
1,3-Dipolar Cycloadditions; Sustmann Classification 675
15.5.3 1,3-Dipolar Cycloadditions of Diazoalkanes 677
15.5.4 1,3-Dipolar Cycloadditions of Nitrile Oxides 680
15.5.5 1,3-Dipolar Cycloadditions and 1,3-Dipolar Cycloreversions
as Steps in the Ozonolysis of Alkenes 683
15.5.6 A Tricky Reaction of Inorganic Azide 685

16 Transition Metal-Mediated Alkenylations, Arylations,
and Alkynylation .. 691
16.1 Alkenylation and Arylation of Gilman Cuprates 692
16.2 Arylation and Alkynylation of Neutral Organocopper Compounds I 694
16.3 Alkenylation and Arylation of Grignard Compounds (Kumada Coupling) 701
16.4 Palladium-Catalyzed Alkenylations and Arylations of Organometallic
Compounds ... 705
16.4.1 A Prelude: Preparation of Haloalkenes and Alkenylboronic
Acid Derivatives, Important Building Blocks for Palladium-
Mediated C,C Couplings; Carbocupration of Alkynes 705
16.4.2 Alkenylation and Arylation of Boron-Bound Groups
(Suzuki Coupling) .. 709
16.4.3 Alkenylation and Arylation of Organozinc Compounds (Negishi
Couplings) and of Functionalized Organozinc Compounds 714
16.4.4 Alkenylation and Arylation of Tin-bound Groups (Stille Reaction) 717
16.4.5 Arylations, Alkenylations and Alkynylation of Neutral
Organocopper Compounds II 721
16.5 Heck Reactions ... 726

17 Oxidations and Reductions ... 737
17.1 Oxidation Numbers in Organic Chemical Compounds, and Organic
Chemical Redox Reactions ... 737
17.2 Cross-References to Redox Reactions Already Discussed in Chapters 1–16 .. 742
17.3 Oxidations .. 748
17.3.1 Oxidations in the Series Alcohol Æ Aldehyde Æ Carboxylic Acid . 748
17.3.2 Oxidative Cleavages .. 758
17.3.3 Oxidations at Heteroatoms 775
17.4 Reductions ... 777

17.4.1 Reductions $\text{R}_{sp^3} - X \rightarrow \text{R}_{sp^3} - H$ or $\text{R}_{sp^3} - X \rightarrow \text{R}_{sp^3} - M$ 778

17.4.2 One-Electron Reductions of Carbonyl Compounds and Esters;
 Reductive Coupling .. 786

17.4.3 Reductions of Carboxylic Acid Derivatives to Alcohols or Amines .. 795

17.4.4 Reductions of Carboxylic Acid Derivatives to Aldehydes 800

17.4.5 Reductions of Carbonyl Compounds to Alcohols 800

17.4.6 Reductions of Carbonyl Compounds to Hydrocarbons 800

17.4.7 Hydrogenation of Alkenes .. 806

17.4.8 Reductions of Aromatic Compounds and Alkynes 815

17.4.9 The Reductive Step of the Julia–Lythgoe Olefination 819

Subject Index ... 827
Organic Mechanisms
Reactions, Stereochemistry and Synthesis
Bruckner, R. - Harmata, M. (Ed.)
2010, XXXII, 855 p., Hardcover
ISBN: 978-3-642-03650-7