1 Radical Substitution Reactions at the Saturated C Atom

1.1 Bonding and Preferred Geometries in Carbon Radicals, Carbenium Ions and Carbanions

1.1.1 Preferred Geometries

1.1.2 Bonding

1.2 Stability of Radicals

1.2.1 Reactive Radicals

1.2.2 Unreactive Radicals

1.3 Relative Rates of Analogous Radical Reactions

1.3.1 The Bell–Evans–Polanyi Principle

1.3.2 The Hammond Postulate

1.4 Radical Substitution Reactions: Chain Reactions

1.5 Radical Initiators

1.6 Radical Chemistry of Alkylmercury(II) Hydrides

1.7 Radical Halogenation of Hydrocarbons

1.7.1 Simple and Multiple Chlorinations

1.7.2 Regioselectivity of Radical Chlorinations

1.7.3 Regioselectivity of Radical Brominations Compared to Chlorinations

1.7.4 Rate Law for Radical Halogenations; Reactivity/Selectivity Principle and the Road to Perdition

1.7.5 Chemoselectivity of Radical Brominations

1.7.6 Radical Chain Chlorination Using Sulfuryl Chloride

1.8 Autoxidations

1.9 Synthetically Useful Radical Substitution Reactions

1.9.1 Simple Reductions

1.9.2 Formation of 5-Hexenyl Radicals: Competing Cyclopentane Formation

1.10 Diazene Fragmentations as Novel Alkane Syntheses

2 Nucleophilic Substitution Reactions at the Saturated C Atom

2.1 Nucleophiles and Electrophiles; Leaving Groups

2.2 Good and Poor Nucleophiles

2.3 Leaving Groups: Good, Bad and Ugly

2.4 \(S_N2\) Reactions: Kinetic and Stereochemical Analysis—Substituent Effects on Reactivity

2.4.1 Energy Profile and Rate Law for \(S_N2\) Reactions: Reaction Order

2.4.2 Stereochemistry of \(S_N2\) Substitutions
2.4.3 A Refined Transition State Model for the S_N^2 Reaction; Crossover Experiment and Endocyclic Restriction Test 63
2.4.4 Substituent Effects on S_N^2 Reactivity. 66
2.5 S_N^1 Reactions: Kinetic and Sterechemical Analysis; Substituent Effects on Reactivity .. 69
 2.5.1 Energy Profile and Rate Law of S_N^1 Reactions; Steady State Approximation .. 69
 2.5.2 Stereochemistry of S_N^1 Reactions; Ion Pairs 72
 2.5.3 Solvent Effects on S_N^1 Reactivity 73
 2.5.4 Substituent Effects on S_N^1 Reactivity. 76
2.6 When Do S_N Reactions at Saturated C Atoms Take Place According to the S_N^1 Mechanism and When Do They Take Place According to the S_N^2 Mechanism? 83
2.7 Getting by with Help from Friends, or a Least Neighbors: Neighboring Group Participation 83
 2.7.1 Conditions for and Features of S_N Reactions with Neighboring Group Participation 83
 2.7.2 Increased Rate through Neighboring Group Participation 85
 2.7.3 Stereoselectivity through Neighboring Group Participation 86
2.8 S_N^i Reactions .. 89
2.9 Preparatively Useful S_N^2 Reactions: Alkylations 91

3 Electrophilic Additions to the C=C Double Bond 103
 3.1 The Concept of cis- and trans-Addition 104
 3.2 Vocabulary of Stereochemistry and Stereoselective Synthesis I ... 104
 3.2.1 Isomerism, Diastereomers/Enantiomers, Chirality 104
 3.2.2 Chemoselectivity, Diastereoselectivity/Enantioselectivity,
 Stereospecificity/Stereocentvergence 106
 3.3 Electrophilic Additions that Take Place Diastereoselectively
 as cis-Additions .. 109
 3.3.1 A Cycloaddition Forming Three-Membered Rings 109
 3.3.2 Additions to C=C Double Bonds That Are Related to
 Cycloadditions and Also Form Three-Membered Rings 114
 3.3.3 cis-Hydration of Alkenes via the Hydroboration/Oxidation/
 Hydrolysis Reaction Sequence 118
 3.3.4 Heterogeneous Hydrogenation 126
 3.4 Enantioselective cis-Additions to C=C Double Bonds 128
 3.4.1 Vocabulary of Stereochemistry and Stereoselective Synthesis II: Topicity, Asymmetric Synthesis 128
 3.4.2 Asymmetric Hydroboration of Achiral Alkenes 129
 3.4.3 Thought Experiment I on the Hydroboration of Chiral Alkenes
 with Chiral Boranes: Mutual Kinetic Resolution 131
4.6.2 Nonunimolecular E$_{1cb}$ Eliminations: Energy Profile and Rate Law

<table>
<thead>
<tr>
<th>4.6.3 Alkene-Forming Step of the Julia-Lythgoe Olefination</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.4 E$_{1cb}$ Eliminations in Protecting Group Chemistry</td>
</tr>
</tbody>
</table>

4.7 β-Eliminations of Het1/Het2

| 4.7.1 Fragmentation of β-Heterosubstituted Organometallic Compounds |
| 4.7.2 Peterson Olefination |
| 4.7.3 Oxaphosphetane Fragmentation, Last Step of Wittig and Horner–Wadsworth–Emmons Reactions |

5 Substitution Reactions on Aromatic Compounds

| 5.1 Electrophilic Aromatic Substitutions via Sigma Complexes (“Ar-SE Reactions”) |
| 5.1.1 Mechanism: Substitution of H$^\circ$ vs ipso-Substitution |
| 5.1.2 Thermodynamic Aspects of Ar-S$_E$ Reactions |
| 5.1.3 Kinetic Aspects of Ar-S$_E$ Reactions: Reactivity and Regioselectivity in Reactions of Electrophiles with Substituted Benzenes |
| 5.2 Ar-S$_E$ Reactions via Sigma Complexes: Individual Reactions |
| 5.2.1 Ar—Hal Bond Formation by Ar-S$_E$ Reaction |
| 5.2.2 Ar—SO$_3$H Bond Formation by Ar-S$_E$ Reaction |
| 5.2.3 Ar—NO$_2$ Bond Formation by Ar-S$_E$ Reaction |
| 5.2.4 Ar—N=N Bond Formation by Ar-S$_E$ Reaction |
| 5.2.5 Ar—Alkyl Bond Formations by Ar-S$_E$ Reaction |
| 5.2.6 Ar—C(OH) Bond Formation by Ar-S$_E$ Reactions and Associated Secondary Reactions |
| 5.2.7 Ar—C(=O) Bond Formation by Ar-S$_E$ Reaction |
| 5.2.8 Ar—C(=O)H Bond Formation through Ar-S$_E$ Reaction |
| 5.3 Electrophilic Substitution Reactions on Metalated Aromatic Compounds |
| 5.3.1 Electrophilic Substitution Reactions of ortho-Lithiated Benzene and Naphthalene Derivatives |
| 5.3.2 Electrophilic Substitution Reactions in Aryl Grignard and Aryllithium Compounds That Are Accessible from Aryl Halides |
| 5.3.3 Electrophilic Substitutions of Arylboronic Acids and Arylboronic Esters |
| 5.4 Nucleophilic Substitution Reactions of Aryldiazonium Salts |
| 5.5 Nucleophilic Substitution Reactions via Meisenheimer Complexes |
| 5.5.1 Mechanism |
| 5.5.2 Examples of Reactions of Preparative Interest |
| 5.6 Nucleophilic Aromatic Substitution via Arynes, cine Substitution |

6 Nucleophilic Substitution Reactions at the Carboxyl Carbon

<p>| 6.1 C=O-Containing Substrates and Their Reactions with Nucleophiles |
| 6.2 Mechanisms, Rate Laws, and Rate of Nucleophilic Substitution Reactions at the Carboxyl Carbon |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1 Mechanism and Rate Laws of S_N Reactions at the Carboxyl Carbon</td>
<td>262</td>
</tr>
<tr>
<td>6.2.2 S_N Reactions at the Carboxyl Carbon: The Influence of Resonance Stabilization of the Reacting C=O Double Bond on the Reactivity of the Acylating Agent</td>
<td>268</td>
</tr>
<tr>
<td>6.2.3 S_N Reactions at the Carboxyl Carbon: The Influence of the Stabilization of the Tetrahedral Intermediate on the Reactivity</td>
<td>272</td>
</tr>
<tr>
<td>6.3 Activation of Carboxylic Acids and of Carboxylic Acid Derivatives</td>
<td>274</td>
</tr>
<tr>
<td>6.3.1 Activation of Carboxylic Acids and Carboxylic Acid Derivatives in Equilibrium Reactions</td>
<td>274</td>
</tr>
<tr>
<td>6.3.2 Conversion of Carboxylic Acids into Isolable Acylating Agents</td>
<td>275</td>
</tr>
<tr>
<td>6.3.3 Complete in Situ Activation of Carboxylic Acids</td>
<td>278</td>
</tr>
<tr>
<td>6.4 Selected S_N Reactions of Heteroatom Nucleophiles at the Carboxyl Carbon</td>
<td>282</td>
</tr>
<tr>
<td>6.4.1 Hydrolysis and Alcoholysis of Esters</td>
<td>287</td>
</tr>
<tr>
<td>6.4.2 Lactone Formation from Hydroxyacid Derivatives</td>
<td>293</td>
</tr>
<tr>
<td>6.4.3 Forming Peptide Bonds</td>
<td>296</td>
</tr>
<tr>
<td>6.4.4 S_N Reactions of Heteroatom Nucleophiles with Carbonic Acid Derivatives</td>
<td>300</td>
</tr>
<tr>
<td>6.5 S_N Reactions of Hydride Donors, Organometallics, and Heteroatom-Stabilized “Carbanions” on the Carboxyl Carbon</td>
<td>306</td>
</tr>
<tr>
<td>6.5.1 When Do Pure Acylations Succeed with Carboxylic Acid (Derivative)s, and When Are Alcohols Produced?</td>
<td>306</td>
</tr>
<tr>
<td>6.5.2 Acylation of Hydride Donors: Reduction of Carboxylic Acid Derivatives to Aldehydes</td>
<td>311</td>
</tr>
<tr>
<td>6.5.3 Acylation of Organometallic Compounds and Heteroatom-Stabilized “Carbanions” With Carboxylic Acid (Derivative)s: Synthesis of Ketones</td>
<td>312</td>
</tr>
<tr>
<td>6.5.4 Acylation of Organometallic Compounds and Heteroatom-Stabilized “Carbanions” with Carbonic Acid Derivatives: Synthesis of Carboxylic Acid Derivatives</td>
<td>317</td>
</tr>
<tr>
<td>7 Carboxylic Compounds, Nitriles, and Their Interconversion</td>
<td>321</td>
</tr>
<tr>
<td>7.1 Preparation of Nitriles from Carboxylic Acid(Derivative)s</td>
<td>322</td>
</tr>
<tr>
<td>7.2 Transformation of Nitriles and Heteroatom Nucleophiles to Carboxylic Acid (Derivative)s</td>
<td>328</td>
</tr>
<tr>
<td>8 Carbonic Acid Derivatives and Heterocumulenes and Their Interconversion</td>
<td>339</td>
</tr>
<tr>
<td>8.1 Preparation of Heterocumulenes from Carbonic Acid (Derivatives)</td>
<td>341</td>
</tr>
<tr>
<td>8.2 Transformation of Heterocumulenes and Heteroatom Nucleophiles into Carbonic Acid Derivatives</td>
<td>348</td>
</tr>
<tr>
<td>8.3 Interconversions of Carbonic Acid Derivatives via Heterocumulenes as Intermediates</td>
<td>356</td>
</tr>
</tbody>
</table>
9 Additions of Heteroatom Nucleophiles to Carbonyl Compounds and Subsequent Reactions—Condensations of Heteroatom Nucleophiles with Carbonyl Compounds

9.1 Additions of Heteroatom Nucleophiles or Hydrocyanic Acid to Carbonyl Compounds

9.1.1 On the Equilibrium Position of Addition Reactions of Heteroatom Nucleophiles to Carbonyl Compounds

9.1.2 Hemiacetal Formation

9.1.3 Formation of Cyanohydrins and a-Aminonitriles

9.1.4 Oligomerization of Aldehydes—Polymerization of Formaldehyde

9.2 Addition of Heteroatom Nucleophiles to Carbonyl Compounds in Combination with Subsequent S₁N₁ Reactions of the Primary Product: Acetalizations

9.3 Addition of Nitrogen Nucleophiles to Carbonyl Compounds in Combination with Subsequent E₁ Eliminations of the Primary Product: Condensation Reactions

10 Addition of Hydride Donors and of Organometallic Compounds to Carbonyl Compounds

10.1 Suitable Hydride Donors and Organometallic Compounds; the Structure of Organolithium Compounds and Grignard Reagents

10.2 Chemoselectivity of the Addition of Hydride Donors to Carbonyl Compounds

10.3 Diastereoselectivity of the Addition of Hydride Donors to Carbonyl Compounds

10.4 Enantioselective Addition of Hydride Donors to Carbonyl Compounds

10.5 Addition of Organometallic Compounds to Carbonyl Compounds

10.5.1 Simple Addition Reactions of Organometallic Compounds

10.5.2 Enantioselective Addition of Organozinc Compounds to Carbonyl Compounds: Chiral Amplification

10.5.3 Diastereoselective Addition of Organometallic Compounds to Carbonyl Compounds
10.6 1,4-Additions of Organometallic Compounds to \(\alpha,\beta \)- Unsaturated Ketones; Structure of Copper-Containing Organometallic Compounds 443

11 Conversion of Phosphorus- or Sulfur-Stabilized C Nucleophiles with Carbonyl Compounds: Addition-Induced Condensations 457

11.1 Condensation of Phosphonium Ylides with Carbonyl Compounds:
Wittig Reaction 457
11.1.1 Bonding in Phosphonium Ylides 457
11.1.2 Nomenclature and Preparation of Phosphonium Ylides 458
11.1.3 Mechanism of the Wittig Reaction 460

11.2 Wittig–Horner Reaction 467

11.3 Horner–Wadsworth–Emmons Reaction 471
11.3.1 Horner–Wadsworth–Emmons Reactions Between Achiral Substrates 471
11.3.2 Horner–Wadsworth–Emmons Reactions between Chiral Substrates: A Potpourri of Stereochemical Specialties 475

11.4 (Marc) Julia–Lythgoe- and (Sylvestre) Julia–Kocienski Olefination 482

12 The Chemistry of Enols and Enamines 487

12.1 Keto-Enol Tautomerism; Enol Content of Carbonyl and Carboxyl Compounds 489

12.2 \(\alpha \)-Functionalization of Carbonyl and Carboxyl Compounds via Tautomeric Enols 493

12.3 \(\alpha \)-Functionalization of Ketones via Their Enamines 505

12.4 \(\alpha \)-Functionalization of Enol Ethers and Silyl Enol Ethers 512

13 Chemistry of the Alkaline Earth Metal Enolates 519

13.1 Basic Considerations 519
13.1.1 Notation and Structure of Enolates 519
13.1.2 Preparation of Enolates by Deprotonation 523
13.1.3 Other Methods for the Generation of Enolates 538
13.1.4 Survey of Reactions between Electrophiles and Enolates and the Issue of Ambidoselectivity 540

13.2 Alkylation of Quantitatively Prepared Enolates and Aza-enolates; Chain-Elongating Syntheses of Carbonyl Compounds and Carboxylic Acid Derivatives 543
13.2.1 Chain-Elongating Syntheses of Carbonyl Compounds 543
13.2.2 Chain-Elongating Syntheses of Carboxylic Acid Derivatives 551

13.3 Hydroxyalkylation of Enolates with Carbonyl Compounds (\textquotedblleft Aldol Addition"): Synthesis of \(\beta \)-Hydroxyketones and \(\beta \)-Hydroxyesters 558
13.3.1 Driving Force of Aldol Additions and Survey of Reaction Products 558
13.3.2 Stereocontrol 560
Contents

13.4 Condensation of Enolates with Carbonyl Compounds: Synthesis of Michael Acceptors
- 13.4.1 Aldol Condensations
- 13.4.2 Knoevenagel Reaction

13.5 Acylation of Enolates
- 13.5.1 Acylation of Ester Enolates
- 13.5.2 Acylation of Ketone Enolates
- 13.5.3 Acylation of the Enolates of Active-Methylene Compounds

13.6 Michael Additions of Enolates
- 13.6.1 Simple Michael Additions
- 13.6.2 Tandem Reactions Consisting of Michael Addition and Consecutive Reactions

14 Rearrangements
- 14.1 Nomenclature of Sigmatropic Shifts
- 14.2 Molecular Origins for the Occurrence of [1,2]-Rearrangements
- 14.3 [1,2]-Rearrangements in Species with a Valence Electron Sextet
 - 14.3.1 [1,2]-Rearrangements of Carbenium Ions
 - 14.3.2 [1,2]-Rearrangements in Carbenes or Carbenoids
- 14.4 [1,2]-Rearrangements without the Occurrence of a Sextet Intermediate
 - 14.4.1 Hydroperoxide Rearrangements
 - 14.4.2 Baeyer–Villiger Rearrangements
 - 14.4.3 Oxidation of Organoborane Compounds
 - 14.4.4 Beckmann Rearrangement
 - 14.4.5 Curtius Degradation
- 14.5 Claisen Rearrangement
 - 14.5.1 Classical Claisen Rearrangement
 - 14.5.2 Ireland-Claisen Rearrangements

15 Thermal Cycloadditions
- 15.1 Driving Force and Feasibility of One-Step [4+2]- and [2+2]-Cycloadditions
- 15.2 Transition State Structures of Selected One-Step [4+2]- and [2+2]-Cycloadditions
 - 15.2.1 Stereostructure of the Transition States of One-Step [4+2]-Cycloadditions
 - 15.2.2 Frontier Orbital Interactions in the Transition States of One-Step [4+2]-Cycloadditions
 - 15.2.3 Frontier Orbital Interactions in the Transition States of the Unknown One-Step Cycloadditions of Alkenes or Alkynes to Alkenes
 - 15.2.4 Frontier Orbital Interactions in the Transition State of One-Step [2+2]-Cycloadditions Involving Ketenes
15.3 Diels–Alder Reactions

15.3.1 Stereoselectivity of Diels–Alder Reactions

15.3.2 Substituent Effects on Reaction Rates of Diels–Alder Reactions

15.3.3 Regioselectivity of Diels–Alder Reactions

15.3.4 Simple Diastereoselectivity of Diels–Alder Reactions

15.4 [2+2]-Cycloadditions with Dichloroketene

15.5 1,3-Dipolar Cycloadditions

15.5.1 1,3-Dipoles

15.5.2 Frontier Orbital Interactions in the Transition States of One-Step 1,3-Dipolar Cycloadditions; Sustmann Classification

15.5.3 1,3-Dipolar Cycloadditions of Diazooalkanes

15.5.4 1,3-Dipolar Cycloadditions of Nitrile Oxides

15.5.5 1,3-Dipolar Cycloadditions and 1,3-Dipolar Cycloreversions as Steps in the Ozonolysis of Alkenes

15.5.6 A Tricky Reaction of Inorganic Azide

16 Transition Metal-Mediated Alkenylations, Arylations, and Alkynylations

16.1 Alkenylation and Arylation of Gilman Cuprates

16.2 Arylation and Alkynylation of Neutral Organocopper Compounds I

16.3 Alkenylation and Arylation of Grignard Compounds (Kumada Coupling)

16.4 Palladium-Catalyzed Alkenylations and Arylations of Organometallic Compounds

16.4.1 A Prelude: Preparation of Haloalkenes and Alkenylboronic Acid Derivatives, Important Building Blocks for Palladium-Mediated C,C Couplings; Carbocupration of Alkynes

16.4.2 Alkenylation and Arylation of Boron-Bound Groups (Suzuki Coupling)

16.4.3 Alkenylation and Arylation of Organozinc Compounds (Negishi Couplings) and of Functionalized Organozinc Compounds

16.4.4 Alkenylation and Arylation of Tin-bound Groups (Stille Reaction)

16.4.5 Arylations, Alkenylations and Alkynylations of Neutral Organocopper Compounds II

16.5 Heck Reactions

17 Oxidations and Reductions

17.1 Oxidation Numbers in Organic Chemical Compounds, and Organic Chemical Redox Reactions

17.2 Cross-References to Redox Reactions Already Discussed in Chapters 1–16

17.3 Oxidations

17.3.1 Oxidations in the Series Alcohol → Aldehyde → Carboxylic Acid

17.3.2 Oxidative Cleavages

17.3.3 Oxidations at Heteroatoms
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4</td>
<td>Reductions</td>
<td>777</td>
</tr>
<tr>
<td>17.4.1</td>
<td>Reductions $R_{sp^3}-X \rightarrow R_{sp^3}-H$ or $R_{sp^3}-X \rightarrow R_{sp^3}-M$</td>
<td>778</td>
</tr>
<tr>
<td>17.4.2</td>
<td>One-Electron Reductions of Carbonyl Compounds and Esters; Reductive Coupling</td>
<td>786</td>
</tr>
<tr>
<td>17.4.3</td>
<td>Reductions of Carboxylic Acid Derivatives to Alcohols or Amines</td>
<td>795</td>
</tr>
<tr>
<td>17.4.4</td>
<td>Reductions of Carboxylic Acid Derivatives to Aldehydes</td>
<td>800</td>
</tr>
<tr>
<td>17.4.5</td>
<td>Reductions of Carbonyl Compounds to Alcohols</td>
<td>800</td>
</tr>
<tr>
<td>17.4.6</td>
<td>Reductions of Carbonyl Compounds to Hydrocarbons</td>
<td>800</td>
</tr>
<tr>
<td>17.4.7</td>
<td>Hydrogenation of Alkenes</td>
<td>806</td>
</tr>
<tr>
<td>17.4.8</td>
<td>Reductions of Aromatic Compounds and Alkynes</td>
<td>815</td>
</tr>
<tr>
<td>17.4.9</td>
<td>The Reductive Step of the Julia–Lythgoe Olefination</td>
<td>819</td>
</tr>
</tbody>
</table>

Subject Index | 827
Organic Mechanisms
Reactions, Stereochemistry and Synthesis
Bruckner, R. - Harmata, M. (Ed.)
2010, XXXII, 855 p., Hardcover
ISBN: 978-3-642-03650-7