Contents

Preface v

Introduction 1
Manfred M. Fischer and Arthur Getis

PART A GI Software Tools

A.1 Spatial Statistics in ArcGIS
Lauren M. Scott and Mark V. Janikas
A.1.1 Introduction 27
A.1.2 Measuring geographic distributions 28
A.1.3 Analyzing patterns 30
A.1.4 Mapping clusters 33
A.1.5 Modeling spatial relationships 35
A.1.6 Custom tool development 38
A.1.7 Concluding remarks 39
References 40

A.2 Spatial Statistics in SAS
Melissa J. Rura and Daniel A. Griffith
A.2.1 Introduction 43
A.2.2 Spatial statistics and SAS 43
A.2.3 SAS spatial analysis built-ins 44
A.2.4 SAS implementation examples 45
A.2.5 Concluding remarks 51
References 51

A.3 Spatial Econometric Functions in R
Roger S. Bivand
A.3.1 Introduction 53
A.3.2 Spatial models and spatial statistics 55
A.3.3 Classes and methods in modelling using R 57
A.3.4 Issues in prediction in spatial econometrics 60
A.3.5 Boston housing values case 65
A.3.6 Concluding remarks 68
References 69
A.4 GeoDa: An Introduction to Spatial Data Analysis
Luc Anselin, Ibnu Syabri and Youngihn Kho
A.4.1 Introduction 73
A.4.2 Design and functionality 76
A.4.3 Mapping and geovisualization 78
A.4.4 Multivariate EDA 80
A.4.5 Spatial autocorrelation analysis 82
A.4.6 Spatial regression 84
A.4.7 Future directions 86
References 87

A.5 STARS: Space-Time Analysis of Regional Systems
Sergio J. Rey and Mark V. Janikas
A.5.1 Introduction 91
A.5.2 Motivation 92
A.5.3 Components and design 92
A.5.4 Illustrations 98
A.5.5 Concluding remarks 109
References 111

A.6 Space-Time Intelligence System Software for the Analysis of Complex Systems
Geoffrey M. Jacquez
A.6.1 Introduction 113
A.6.2 An approach to the analysis of complex systems 115
A.6.3 Visualization 116
A.6.4 Exploratory space-time analysis 117
A.6.5 Analysis and modeling 119
A.6.6 Concluding remarks 122
References 123

A.7 Geostatistical Software
Pierre Goovaerts
A.7.1 Introduction 125
A.7.2 Open source code versus black-box software 127
A.7.3 Main functionalities 128
A.7.4 Affordability and user-friendliness 131
A.7.5 Concluding remarks 132
References 133

A.8 GeoSurveillance: GIS-based Exploratory Spatial Analysis Tools for Monitoring Spatial Patterns and Clusters
Gyoungju Lee, Ikuho Yamada and Peter Rogerson
A.8.1 Introduction 135
A.8.2 Structure of GeoSurveillance 137
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.8.3</td>
<td>Methodological overview</td>
<td>138</td>
</tr>
<tr>
<td>A.8.4</td>
<td>Illustration of GeoSurveillance</td>
<td>142</td>
</tr>
<tr>
<td>A.8.5</td>
<td>Concluding remarks</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>149</td>
</tr>
<tr>
<td>A.9</td>
<td>Web-based Analytical Tools for the Exploration of Spatial Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Luc Anselin, Yong Wook Kim and Ibnu Syabri</td>
<td></td>
</tr>
<tr>
<td>A.9.1</td>
<td>Introduction</td>
<td>151</td>
</tr>
<tr>
<td>A.9.2</td>
<td>Methods</td>
<td>152</td>
</tr>
<tr>
<td>A.9.3</td>
<td>Architecture</td>
<td>158</td>
</tr>
<tr>
<td>A.9.4</td>
<td>Illustrations</td>
<td>163</td>
</tr>
<tr>
<td>A.9.5</td>
<td>Concluding remarks</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>171</td>
</tr>
<tr>
<td>A.10</td>
<td>PySAL: A Python Library of Spatial Analytical Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sergio J. Rey and Luc Anselin</td>
<td></td>
</tr>
<tr>
<td>A.10.1</td>
<td>Introduction</td>
<td>175</td>
</tr>
<tr>
<td>A.10.2</td>
<td>Design and components</td>
<td>177</td>
</tr>
<tr>
<td>A.10.3</td>
<td>Empirical illustrations</td>
<td>180</td>
</tr>
<tr>
<td>A.10.4</td>
<td>Concluding remarks</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>191</td>
</tr>
<tr>
<td>PART B</td>
<td>Spatial Statistics and Geostatistics</td>
<td></td>
</tr>
<tr>
<td>B.1</td>
<td>The Nature of Georeferenced Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Robert P. Haining</td>
<td></td>
</tr>
<tr>
<td>B.1.1</td>
<td>Introduction</td>
<td>197</td>
</tr>
<tr>
<td>B.1.2</td>
<td>From geographical reality to the spatial data matrix</td>
<td>199</td>
</tr>
<tr>
<td>B.1.3</td>
<td>Properties of spatial data in the spatial data matrix</td>
<td>204</td>
</tr>
<tr>
<td>B.1.4</td>
<td>Implications of spatial data properties for data analysis</td>
<td>208</td>
</tr>
<tr>
<td>B.1.5</td>
<td>Concluding remarks</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>214</td>
</tr>
<tr>
<td>B.2</td>
<td>Exploratory Spatial Data Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roger S. Bivand</td>
<td></td>
</tr>
<tr>
<td>B.2.1</td>
<td>Introduction</td>
<td>219</td>
</tr>
<tr>
<td>B.2.2</td>
<td>Plotting and exploratory data analysis</td>
<td>220</td>
</tr>
<tr>
<td>B.2.3</td>
<td>Geovisualization</td>
<td>224</td>
</tr>
<tr>
<td>B.2.4</td>
<td>Exploring point patterns and geostatistics</td>
<td>229</td>
</tr>
<tr>
<td>B.2.5</td>
<td>Exploring areal data</td>
<td>236</td>
</tr>
<tr>
<td>B.2.6</td>
<td>Concluding remarks</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>250</td>
</tr>
</tbody>
</table>
B.3 Spatial Autocorrelation

Arthur Getis

- **B.3.1** Introduction 255
- **B.3.2** Attributes and uses of the concept of spatial autocorrelation 257
- **B.3.3** Representation of spatial autocorrelation 259
- **B.3.4** Spatial autocorrelation measures and tests 262
- **B.3.5** Problems in dealing with spatial autocorrelation 272
- **B.3.6** Spatial autocorrelation software 274

References 275

B.4 Spatial Clustering

Jared Aldstadt

- **B.4.1** Introduction 279
- **B.4.2** Global measures of spatial clustering 280
- **B.4.3** Local measures of spatial clustering 289
- **B.4.4** Concluding remarks 297

References 298

B.5 Spatial Filtering

Daniel A. Griffith

- **B.5.1** Introduction 301
- **B.5.2** Types of spatial filtering 303
- **B.5.3** Eigenfunction spatial filtering and generalized linear models 312
- **B.5.4** Eigenfunction spatial filtering and geographically weighted regression 313
- **B.5.5** Eigenfunction spatial filtering and geographical interpolation 315
- **B.5.6** Eigenfunction spatial filtering and spatial interaction data 316
- **B.5.7** Concluding remarks 317

References 317

B.6 The Variogram and Kriging

Margaret A. Oliver

- **B.6.1** Introduction 319
- **B.6.2** The theory of geostatistics 319
- **B.6.3** Estimating the variogram 321
- **B.6.4** Modeling the variogram 327
- **B.6.5** Case study: The variogram 331
- **B.6.6** Geostatistical prediction: Kriging 337
- **B.6.7** Case study: Kriging 344

References 350
Part C Spatial Econometrics

C.1 Spatial Econometric Models
James P. LeSage and R. Kelley Pace

C.1.1 Introduction
C.1.2 Estimation of spatial lag models
C.1.3 Estimates of parameter dispersion and inference
C.1.4 Interpreting parameter estimates
C.1.5 Concluding remarks

References

355 360 365 366 374

C.2 Spatial Panel Data Models
J. Paul Elhorst

C.2.1 Introduction
C.2.2 Standard models for spatial panels
C.2.3 Estimation of panel data models
C.2.4 Estimation of spatial panel data models
C.2.5 Model comparison and prediction
C.2.6 Concluding remarks

References

377 378 382 389 399 403

C.3 Spatial Econometric Methods for Modeling Origin-Destination Flows
James P. LeSage and Manfred M. Fischer

C.3.1 Introduction
C.3.2 The analytical framework
C.3.3 Problems that plague empirical use of conventional spatial interaction models
C.3.4 Concluding remarks

References

409 410 416 431

C.4 Spatial Econometric Model Averaging
Olivier Parent and James P. LeSage

C.4.1 Introduction
C.4.2 The theory of model averaging
C.4.3 The theory applied to spatial regression models
C.4.4 Model averaging for spatial regression models
C.4.5 Applied illustrations
C.4.6 Concluding remarks

References

435 436 440 444 450 458

C.5 Geographically Weighted Regression
David C. Wheeler and Antonio Páez

C.5.1 Introduction
C.5.2 Estimation
C.5.3 Issues

461 462 467
C.5.4 Diagnostic tools 469
C.5.5 Extensions 472
C.5.6 Bayesian hierarchical models as an alternative to GWR 474
C.5.7 Bladder cancer mortality example 477
References 484

C.6 Expansion Method, Dependency, and Multimodeling
Emilio Casetti
C.6.1 Introduction 487
C.6.2 Expansion method 488
C.6.3 Dependency 493
C.6.4 Multimodeling 496
C.6.5 Concluding remarks 501
References 502

C.7 Multilevel Modeling
S.V. Subramanian
C.7.1 Introduction 507
C.7.2 Multilevel framework: A necessity for understanding ecological effects 509
C.7.3 A typology of multilevel data structures 510
C.7.4 The distinction between levels and variables 511
C.7.5 Multilevel analysis 512
C.7.6 Multilevel statistical models 513
C.7.7 Exploiting the flexibility of multilevel models to incorporating ‘realistic’ complexity 521
C.7.8 Concluding remarks 523
References 524

Part D The Analysis of Remotely Sensed Data

D.1 ARTMAP Neural Network Multisensor Fusion Model for Multiscale Land Cover Characterization
Sucharita Gopal, Curtis E. Woodcock and Weiguo Liu
D.1.1 Background: Multiscale characterization of land cover 529
D.1.2 Approaches for multiscale land cover characterization 530
D.1.3 Research methodology and data 532
D.1.4 Results and analysis 534
D.1.5 Concluding remarks 540
References 541

D.2 Model Selection in Markov Random Fields for High Spatial Resolution Hyperspectral Data
Francesco Lagona
D.2.1 Introduction 545
D.2.2 Restoration, segmentation and classification of HSRH images 549
D.2.3 Adjacency selection in Markov random fields 550
D.2.4 A study of adjacency selection from hyperspectral data 554
D.2.5 Concluding remarks 560
References 561

D.3 Geographic Object-based Image Change Analysis
Douglas Stow
D.3.1 Introduction 565
D.3.2 Purpose of GEOBICA 566
D.3.3 Imagery and pre-processing requirements 568
D.3.4 GEOBIA principles 569
D.3.5 GEOBICA approaches 571
D.3.6 GEOBICA strategies 572
D.3.7 Post-processing 575
D.3.8 Accuracy assessment 576
D.3.9 Concluding remarks 578
References 579

Part E Applications in Economic Sciences

E.1 The Impact of Human Capital on Regional Labor Productivity in Europe
Manfred M. Fischer, Monika Bartkowska, Aleksandra Riedl, Sascha Sardadvar and Andrea Kunnert
E.1.1 Introduction 585
E.1.2 Framework and methodology 586
E.1.3 Application of the methodology 592
E.1.4 Concluding remarks 595
References 596

E.2 Income Distribution Dynamics and Cross-Region Convergence in Europe
Manfred M. Fischer and Peter Stumpner
E.2.1 Introduction 599
E.2.2 The empirical framework 601
E.2.3 Revealing empirics 608
E.2.4 Concluding remarks 622
References 623
Appendix 626
E.3 A Multi-Equation Spatial Econometric Model, with Application to EU Manufacturing Productivity Growth

Bernard Fingleton

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.3.1 Introduction</td>
<td>629</td>
</tr>
<tr>
<td>E.3.2 Theory</td>
<td>630</td>
</tr>
<tr>
<td>E.3.3 Incorporating technical progress variations</td>
<td>632</td>
</tr>
<tr>
<td>E.3.4 The econometric model</td>
<td>637</td>
</tr>
<tr>
<td>E.3.5 Model restriction</td>
<td>639</td>
</tr>
<tr>
<td>E.3.6 The final model</td>
<td>642</td>
</tr>
<tr>
<td>E.3.7 Concluding remarks</td>
<td>644</td>
</tr>
<tr>
<td>References</td>
<td>645</td>
</tr>
<tr>
<td>Appendix</td>
<td>647</td>
</tr>
</tbody>
</table>

Part F Applications in Environmental Sciences

F.1 A Fuzzy k-Means Classification and a Bayesian Approach for Spatial Prediction of Landslide Hazard

Pece V. Gorsevski, Paul E. Gessler and Piotr Jankowski

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.1.1 Introduction</td>
<td>653</td>
</tr>
<tr>
<td>F.1.2 Overview of current prediction methods</td>
<td>655</td>
</tr>
<tr>
<td>F.1.3 Modeling theory</td>
<td>658</td>
</tr>
<tr>
<td>F.1.4 Application of the modeling approach</td>
<td>666</td>
</tr>
<tr>
<td>F.1.5 Concluding remarks</td>
<td>679</td>
</tr>
<tr>
<td>References</td>
<td>680</td>
</tr>
</tbody>
</table>

F.2 Incorporating Spatial Autocorrelation in Species Distribution Models

Jennifer A. Miller and Janet Franklin

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.2.1 Introduction</td>
<td>685</td>
</tr>
<tr>
<td>F.2.2 Data and methods</td>
<td>687</td>
</tr>
<tr>
<td>F.2.3 Results</td>
<td>691</td>
</tr>
<tr>
<td>F.2.4 Concluding remarks</td>
<td>697</td>
</tr>
<tr>
<td>References</td>
<td>699</td>
</tr>
</tbody>
</table>

F.3 A Web-based Environmental Decision Support System for Environmental Planning and Watershed Management

Ramanathan Sugumaran, James C. Meyer and Jim Davis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.3.1 Introduction</td>
<td>703</td>
</tr>
<tr>
<td>F.3.2 Study area</td>
<td>704</td>
</tr>
<tr>
<td>F.3.3 Design and implementation of WEDSS</td>
<td>705</td>
</tr>
<tr>
<td>F.3.4 The WEDSS in action</td>
<td>712</td>
</tr>
<tr>
<td>F.3.5 Concluding remarks</td>
<td>715</td>
</tr>
<tr>
<td>References</td>
<td>716</td>
</tr>
</tbody>
</table>
Part G Applications in Health Sciences

G.1 Spatio-Temporal Patterns of Viral Meningitis in Michigan, 1993-2001
Sharon K. Greene, Mark A. Schmidt, Mary Grace Stobierski and Mark L. Wilson
 G.1.1 Introduction 721
 G.1.2 Materials and methods 723
 G.1.3 Results 725
 G.1.4 Concluding remarks 730
 References 734

G.2 Space-Time Visualization and Analysis in the Cancer Atlas Viewer
Dunrie A. Greiling, Geoffrey M. Jacquez, Andrew M. Kaufmann and Robert G. Rommel
 G.2.1 Introduction 737
 G.2.2 Data and methods 739
 G.2.3 Results 742
 G.2.4 Concluding remarks 750
 References 751

G.3 Exposure Assessment in Environmental Epidemiology
Jaymie R. Meliker, Melissa J. Slotnick, Gillian A. AvRuskin, Andrew M. Kaufmann, Geoffrey M. Jacquez and Jerome O. Nriagu
 G.3.1 Introduction 753
 G.3.2 Data and methods 755
 G.3.3 Features and architecture of Time-GIS 757
 G.3.4 Application 759
 G.3.5 Concluding remarks 765
 References 766

List of Figures 769
List of Tables 779
Subject Index 785
Author Index 793
Contributing Authors 805
Handbook of Applied Spatial Analysis
Software Tools, Methods and Applications
Fischer, M.M.; Getis, A. (Eds.)
2010, XV, 811 p., Hardcover
ISBN: 978-3-642-03646-0