Contents

Preface v

Introduction 1
Manfred M. Fischer and Arthur Getis

PART A GI Software Tools

A.1 Spatial Statistics in ArcGIS
Lauren M. Scott and Mark V. Janikas
A.1.1 Introduction 27
A.1.2 Measuring geographic distributions 28
A.1.3 Analyzing patterns 30
A.1.4 Mapping clusters 33
A.1.5 Modeling spatial relationships 35
A.1.6 Custom tool development 38
A.1.7 Concluding remarks 39
References 40

A.2 Spatial Statistics in SAS
Melissa J. Rura and Daniel A. Griffith
A.2.1 Introduction 43
A.2.2 Spatial statistics and SAS 43
A.2.3 SAS spatial analysis built-ins 44
A.2.4 SAS implementation examples 45
A.2.5 Concluding remarks 51
References 51

A.3 Spatial Econometric Functions in R
Roger S. Bivand
A.3.1 Introduction 53
A.3.2 Spatial models and spatial statistics 55
A.3.3 Classes and methods in modelling using R 57
A.3.4 Issues in prediction in spatial econometrics 60
A.3.5 Boston housing values case 65
A.3.6 Concluding remarks 68
References 69
A.4 GeoDa: An Introduction to Spatial Data Analysis
Luc Anselin, Ibnu Syabri and Youngihn Kho

A.4.1 Introduction 73
A.4.2 Design and functionality 76
A.4.3 Mapping and geovisualization 78
A.4.4 Multivariate EDA 80
A.4.5 Spatial autocorrelation analysis 82
A.4.6 Spatial regression 84
A.4.7 Future directions 86
References 87

A.5 STARS: Space-Time Analysis of Regional Systems
Sergio J. Rey and Mark V. Janikas

A.5.1 Introduction 91
A.5.2 Motivation 92
A.5.3 Components and design 92
A.5.4 Illustrations 98
A.5.5 Concluding remarks 109
References 111

A.6 Space-Time Intelligence System Software for the Analysis of Complex Systems
Geoffrey M. Jacquez

A.6.1 Introduction 113
A.6.2 An approach to the analysis of complex systems 115
A.6.3 Visualization 116
A.6.4 Exploratory space-time analysis 117
A.6.5 Analysis and modeling 119
A.6.6 Concluding remarks 122
References 123

A.7 Geostatistical Software
Pierre Goovaerts

A.7.1 Introduction 125
A.7.2 Open source code versus black-box software 127
A.7.3 Main functionalities 128
A.7.4 Affordability and user-friendliness 131
A.7.5 Concluding remarks 132
References 133

A.8 GeoSurveillance: GIS-based Exploratory Spatial Analysis Tools for Monitoring Spatial Patterns and Clusters
Gyoungju Lee, Ikuho Yamada and Peter Rogerson

A.8.1 Introduction 135
A.8.2 Structure of GeoSurveillance 137
A.8.3 Methodological overview 138
A.8.4 Illustration of GeoSurveillance 142
A.8.5 Concluding remarks 148
References 149

A.9 Web-based Analytical Tools for the Exploration of Spatial Data
Luc Anselin, Yong Wook Kim and Ibnu Syabri
A.9.1 Introduction 151
A.9.2 Methods 152
A.9.3 Architecture 158
A.9.4 Illustrations 163
A.9.5 Concluding remarks 170
References 171

A.10 PySAL: A Python Library of Spatial Analytical Methods
Sergio J. Rey and Luc Anselin
A.10.1 Introduction 175
A.10.2 Design and components 177
A.10.3 Empirical illustrations 180
A.10.4 Concluding remarks 191
References 191

PART B Spatial Statistics and Geostatistics

B.1 The Nature of Georeferenced Data
Robert P. Haining
B.1.1 Introduction 197
B.1.2 From geographical reality to the spatial data matrix 199
B.1.3 Properties of spatial data in the spatial data matrix 204
B.1.4 Implications of spatial data properties for data analysis 208
B.1.5 Concluding remarks 214
References 214

B.2 Exploratory Spatial Data Analysis
Roger S. Bivand
B.2.1 Introduction 219
B.2.2 Plotting and exploratory data analysis 220
B.2.3 Geovisualization 224
B.2.4 Exploring point patterns and geostatistics 229
B.2.5 Exploring areal data 236
B.2.6 Concluding remarks 249
References 250
B.3 Spatial Autocorrelation

Arthur Getis

B.3.1 Introduction 255
B.3.2 Attributes and uses of the concept of spatial autocorrelation 257
B.3.3 Representation of spatial autocorrelation 259
B.3.4 Spatial autocorrelation measures and tests 262
B.3.5 Problems in dealing with spatial autocorrelation 272
B.3.6 Spatial autocorrelation software 274

References 275

B.4 Spatial Clustering

Jared Aldstadt

B.4.1 Introduction 279
B.4.2 Global measures of spatial clustering 280
B.4.3 Local measures of spatial clustering 289
B.4.4 Concluding remarks 297

References 298

B.5 Spatial Filtering

Daniel A. Griffith

B.5.1 Introduction 301
B.5.2 Types of spatial filtering 303
B.5.3 Eigenfunction spatial filtering and generalized linear models 312
B.5.4 Eigenfunction spatial filtering and geographically weighted regression 313
B.5.5 Eigenfunction spatial filtering and geographical interpolation 315
B.5.6 Eigenfunction spatial filtering and spatial interaction data 316
B.5.7 Concluding remarks 317

References 317

B.6 The Variogram and Kriging

Margaret A. Oliver

B.6.1 Introduction 319
B.6.2 The theory of geostatistics 319
B.6.3 Estimating the variogram 321
B.6.4 Modeling the variogram 327
B.6.5 Case study: The variogram 331
B.6.6 Geostatistical prediction: Kriging 337
B.6.7 Case study: Kriging 344

References 350
Part C Spatial Econometrics

C.1 Spatial Econometric Models
 James P. LeSage and R. Kelley Pace
 C.1.1 Introduction 355
 C.1.2 Estimation of spatial lag models 360
 C.1.3 Estimates of parameter dispersion and inference 365
 C.1.4 Interpreting parameter estimates 366
 C.1.5 Concluding remarks 374
 References 374

C.2 Spatial Panel Data Models
 J. Paul Elhorst
 C.2.1 Introduction 377
 C.2.2 Standard models for spatial panels 378
 C.2.3 Estimation of panel data models 382
 C.2.4 Estimation of spatial panel data models 389
 C.2.5 Model comparison and prediction 399
 C.2.6 Concluding remarks 403
 References 405

C.3 Spatial Econometric Methods for Modeling Origin-Destination Flows
 James P. LeSage and Manfred M. Fischer
 C.3.1 Introduction 409
 C.3.2 The analytical framework 410
 C.3.3 Problems that plague empirical use of conventional spatial interaction models 416
 C.3.4 Concluding remarks 431
 References 432

C.4 Spatial Econometric Model Averaging
 Olivier Parent and James P. LeSage
 C.4.1 Introduction 435
 C.4.2 The theory of model averaging 436
 C.4.3 The theory applied to spatial regression models 440
 C.4.4 Model averaging for spatial regression models 444
 C.4.5 Applied illustrations 450
 C.4.6 Concluding remarks 458
 References 459

C.5 Geographically Weighted Regression
 David C. Wheeler and Antonio Páez
 C.5.1 Introduction 461
 C.5.2 Estimation 462
 C.5.3 Issues 467
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.5.4</td>
<td>Diagnostic tools</td>
<td>469</td>
</tr>
<tr>
<td>C.5.5</td>
<td>Extensions</td>
<td>472</td>
</tr>
<tr>
<td>C.5.6</td>
<td>Bayesian hierarchical models as an alternative to GWR</td>
<td>474</td>
</tr>
<tr>
<td>C.5.7</td>
<td>Bladder cancer mortality example</td>
<td>477</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>484</td>
</tr>
<tr>
<td>C.6</td>
<td>Expansion Method, Dependency, and Multimodeling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emilio Casetti</td>
<td></td>
</tr>
<tr>
<td>C.6.1</td>
<td>Introduction</td>
<td>487</td>
</tr>
<tr>
<td>C.6.2</td>
<td>Expansion method</td>
<td>488</td>
</tr>
<tr>
<td>C.6.3</td>
<td>Dependency</td>
<td>493</td>
</tr>
<tr>
<td>C.6.4</td>
<td>Multimodeling</td>
<td>496</td>
</tr>
<tr>
<td>C.6.5</td>
<td>Concluding remarks</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>502</td>
</tr>
<tr>
<td>C.7</td>
<td>Multilevel Modeling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.V. Subramanian</td>
<td></td>
</tr>
<tr>
<td>C.7.1</td>
<td>Introduction</td>
<td>507</td>
</tr>
<tr>
<td>C.7.2</td>
<td>Multilevel framework: A necessity for understanding ecological effects</td>
<td>509</td>
</tr>
<tr>
<td>C.7.3</td>
<td>A typology of multilevel data structures</td>
<td>510</td>
</tr>
<tr>
<td>C.7.4</td>
<td>The distinction between levels and variables</td>
<td>511</td>
</tr>
<tr>
<td>C.7.5</td>
<td>Multilevel analysis</td>
<td>512</td>
</tr>
<tr>
<td>C.7.6</td>
<td>Multilevel statistical models</td>
<td>513</td>
</tr>
<tr>
<td>C.7.7</td>
<td>Exploiting the flexibility of multilevel models to incorporate 'realistic' complexity</td>
<td>521</td>
</tr>
<tr>
<td>C.7.8</td>
<td>Concluding remarks</td>
<td>523</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>524</td>
</tr>
</tbody>
</table>

Part D The Analysis of Remotely Sensed Data

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1</td>
<td>ARTMAP Neural Network Multisensor Fusion Model for Multiscale Land Cover Characterization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sucharita Gopal, Curtis E. Woodcock and Weiguo Liu</td>
<td></td>
</tr>
<tr>
<td>D.1.1</td>
<td>Background: Multiscale characterization of land cover</td>
<td>529</td>
</tr>
<tr>
<td>D.1.2</td>
<td>Approaches for multiscale land cover characterization</td>
<td>530</td>
</tr>
<tr>
<td>D.1.3</td>
<td>Research methodology and data</td>
<td>532</td>
</tr>
<tr>
<td>D.1.4</td>
<td>Results and analysis</td>
<td>534</td>
</tr>
<tr>
<td>D.1.5</td>
<td>Concluding remarks</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>541</td>
</tr>
<tr>
<td>D.2</td>
<td>Model Selection in Markov Random Fields for High Spatial Resolution Hyperspectral Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Francesco Lagona</td>
<td></td>
</tr>
<tr>
<td>D.2.1</td>
<td>Introduction</td>
<td>545</td>
</tr>
</tbody>
</table>
D.2.2 Restoration, segmentation and classification of HSRH images 549
D.2.3 Adjacency selection in Markov random fields 550
D.2.4 A study of adjacency selection from hyperspectral data 554
D.2.5 Concluding remarks 560
References 561

D.3 Geographic Object-based Image Change Analysis
 Douglas Stow
 D.3.1 Introduction 565
 D.3.2 Purpose of GEOBICA 566
 D.3.3 Imagery and pre-processing requirements 568
 D.3.4 GEOBIA principles 569
 D.3.5 GEOBICA approaches 571
 D.3.6 GEOBICA strategies 572
 D.3.7 Post-processing 575
 D.3.8 Accuracy assessment 576
 D.3.9 Concluding remarks 578
References 579

Part E Applications in Economic Sciences

E.1 The Impact of Human Capital on Regional Labor Productivity in Europe
 Manfred M. Fischer, Monika Bartkowska, Aleksandra Riedl, Sascha Sardadvar and Andrea Kunnert
 E.1.1 Introduction 585
 E.1.2 Framework and methodology 586
 E.1.3 Application of the methodology 592
 E.1.4 Concluding remarks 595
References 596

E.2 Income Distribution Dynamics and Cross-Region Convergence in Europe
 Manfred M. Fischer and Peter Stumpner
 E.2.1 Introduction 599
 E.2.2 The empirical framework 601
 E.2.3 Revealing empirics 608
 E.2.4 Concluding remarks 622
References 623
Appendix 626
E.3 A Multi-Equation Spatial Econometric Model, with Application to EU Manufacturing Productivity Growth

Bernard Fingleton

E.3.1 Introduction 629
E.3.2 Theory 630
E.3.3 Incorporating technical progress variations 632
E.3.4 The econometric model 637
E.3.5 Model restriction 639
E.3.6 The final model 642
E.3.7 Concluding remarks 644
References 645
Appendix 647

Part F Applications in Environmental Sciences

F.1 A Fuzzy k-Means Classification and a Bayesian Approach for Spatial Prediction of Landslide Hazard

Pece V. Gorsevski, Paul E. Gessler and Piotr Jankowski

F.1.1 Introduction 653
F.1.2 Overview of current prediction methods 655
F.1.3 Modeling theory 658
F.1.4 Application of the modeling approach 666
F.1.5 Concluding remarks 679
References 680

F.2 Incorporating Spatial Autocorrelation in Species Distribution Models

Jennifer A. Miller and Janet Franklin

F.2.1 Introduction 685
F.2.2 Data and methods 687
F.2.3 Results 691
F.2.4 Concluding remarks 697
References 699

F.3 A Web-based Environmental Decision Support System for Environmental Planning and Watershed Management

Ramanathan Sugumaran, James C. Meyer and Jim Davis

F.3.1 Introduction 703
F.3.2 Study area 704
F.3.3 Design and implementation of WEDSS 705
F.3.4 The WEDSS in action 712
F.3.5 Concluding remarks 715
References 716
Handbook of Applied Spatial Analysis
Software Tools, Methods and Applications
Fischer, M.M.; Getis, A. (Eds.)
2010, XV, 811 p., Hardcover
ISBN: 978-3-642-03646-0