Peer-to-peer (P2P) technology, or peer computing, is an emerging paradigm that is now viewed as a potential technology to redesign distributed architectures (e.g., the Internet) and, consequently, distributed processing. In a classical P2P network, all participating computers (nodes) have equivalent capabilities and responsibilities. The nodes can directly exchange resources and services between each other without the need for centralized servers. They can collaborate to perform tasks by aggregating the pool of resources (e.g., storage, CPU cycles) available in the P2P network.

P2P computing distinguishes itself from traditional distributed computing in three main aspects. First, the scalability of P2P systems goes far beyond that of traditional distributed systems. In particular, since P2P systems do not have a fixed topology, the nodes can join and leave the system anytime, and the system’s content and load are distributed in real time according to the actual demand and resource capability of nodes. For example, if a sharing file becomes “hot,” it is repeatedly requested by several users, the file can be duplicated and deployed to thousands of nodes. The nodes can harness the power of computers over the Internet and, consequently, distribute processing. In a classical P2P network, all the nodes can directly exchange resources and services between each other without the need for centralized servers. They can collaborate to perform tasks by aggregating the pool of resources (e.g., storage, CPU cycles) available in the P2P network.

The scale and dynamism that characterize P2P systems require traditional distributed technologies to be reexamined. A paradigm shift that includes selforganization, adaptation, and resilience is called for. In recent years, there has been a proliferation of research efforts to design P2P systems and applications. This book attempts to present the technical challenges offered by P2P systems and the efforts that have been proposed to address them. The purpose of this book is to provide a thorough and comprehensive review of recent advances on routing and discovery methods, load balancing and replication techniques, security, accountability and auditing, and pervasive computing. This book is intended for researchers and practitioners who are interested in P2P systems and their applications. It is also intended for students who are studying P2P systems and their applications. The book is organized into four parts. Part I introduces P2P systems and their applications. Part II describes the technical challenges offered by P2P systems. Part III presents the solutions to these challenges. Part IV provides a case study of a real-world P2P system.
anonymity, as well as trust and reputation schemes; programming models and P2P systems and projects. Besides surveying existing methods and systems, the book also compares and evaluates some of the more promising schemes.

The need for such a book is evident. It provides a single source for practitioners, researchers and newcomers on the state-of-the-art in the field. For practitioners, this book explains best practice, guiding selection of appropriate techniques for each application. For researchers, this book provides a foundation for development of new and more effective methods. For newcomers, this book is an overview of the wide range of advanced techniques for realizing effective P2P systems. This book can also be used as a text for an advanced course on Peer-to-Peer Computing and Technologies, or as a companion text for a variety of courses, including courses on distributed systems, grid, and cluster computing.

Organization of the Book

This book consists of ten chapters. Besides the first chapter that sets up the context and the last chapter that concludes with directions on the future of P2P, each of the other eight chapters is essentially self-contained and focuses on one aspect of P2P computing. These eight chapters can thus be read and used on their own, independently of the others.

− In Chap. 1, we provide background on P2P computing in general. We discuss the characteristics of P2P systems that distinguish them from other distributed systems. This chapter also looks at the benefits and promises of P2P, and some of the applications that will benefit from P2P computing. It examines the issues in designing P2P systems and sets the stage for subsequent chapters.

− Chapter 2 presents the various architectures of P2P systems. At one extreme, we have P2P systems that are supported by centralized servers. At the other extreme, pure P2P systems are completely decentralized. Between these two extremes are hybrid systems where nodes are organized into two layers: the upper tier “super” nodes act as servers for lower tier nodes. We compare these different architectures. In parallel to the static architectural considerations, we also look at how peers are defined—statically or dynamically. Support for dynamic reorganization of peers allows communities to be formed based on some common interests among nodes. For hybrid systems, we examine how nodes that are more powerful can be exploited to shoulder more responsibilities. Issues on incentives and fairness are also addressed.

− In Chap. 3, we focus on the issue of searching. There are several modes in which searching can be performed. First, a query node can broadcast queries to all nodes. Second, the query can be directed to nodes that are more likely to contain useful information first. This requires nodes to organize their peers based on some optimization criterion. Third, hashing techniques can be applied. We also look at how load-balancing can be realized in the hash-based category. Each of these techniques call for different metadata to be maintained.
Chapter 4 presents techniques to perform complex queries. Besides simple key-
word search, there is an increasing need to support more semantic-based queries
for database and multimedia applications. These include partial match queries,
range and join queries, and queries involving high-dimension vectors. We also
look at how distributed queries are optimized and processed in the P2P context.

Replication and caching are very effective mechanisms that can bring the
data/results closer to the users to improve performance. However, in the P2P
environment, it becomes much harder to control the optimal degree of replica-
tion, as well as to maintain the consistency between replicas. Chapter 5 presents
the issues that need to be addressed and examines some of the existing solutions.
In particular, we look at techniques that manage replicas/cache dynamically.

Before P2P can be widely accepted by users, there are several other issues that
need to be addressed: trust, privacy, anonymity, accountability, reliability, and
security. These issues are discussed in Chaps. 6 and 7. In Chap. 6, we focus on
security, privacy, and anonymity issues. We begin by discussing techniques de-
digned to secure data as well as the overall P2P environment from different types
of attacks. Then we present methods that prevent users from taking advantage
of the system by freeloding off the resources contributed by a few. Finally, we
look at techniques that are designed to support anonymity and privacy, to pro-
tect both the users that disseminate the data, as well as nodes that store the data.
Techniques that authenticate third-party data publication are also examined in
this chapter.

Chapter 7 focuses on accountability, trust, and reputation. Here, we look at tech-
niques that automate the collection and processing of information from previous
queries to help users assess whether they can trust a server with a new query.

In Chap. 8, we look at programming tools that are suitable for P2P environ-
ments. After having presented in the previous chapters the theoretical aspects
of P2P systems, in this chapter we will identify tools to develop P2P systems,
ranging from low level network programming tools, like sockets, to specific pro-
gramming languages designed to be used for P2P applications.

Chapter 9 describes some representative P2P systems and applications that have
been deployed. We look at how different application environments and require-
ments drive the design and architecture of the systems. We discuss popular tech-
niques employed in each type of applications. In particular, we present systems
that support file sharing, data backup, structured data management, and data
caching. Additionally, we also introduce mobile systems employing P2P tech-
nologies.

Finally, in Chap. 10, we make a conclusion of the book and suggest promising re-
search topics that deserve further attention. Additionally, we also discuss a potential
use of P2P in industry by analyzing a case of supply chain management system.
Peer-to-Peer Computing
Principles and Applications
Vu, Q.H.; Lupu, M.; Ooi, B.C.
2010, XVI, 317 p., Hardcover
ISBN: 978-3-642-03513-5