Contents

Part I Newtonian Mechanics in Moving Coordinate Systems

1 Newton’s Equations in a Rotating Coordinate System 3
 1.1 Introduction of the Operator \(\hat{D} \) .. 6
 1.2 Formulation of Newton’s Equation in the Rotating Coordinate System 7
 1.3 Newton’s Equations in Systems with Arbitrary Relative Motion . . . 7

2 Free Fall on the Rotating Earth ... 9
 2.1 Perturbation Calculation ... 11
 2.2 Method of Successive Approximation 12
 2.3 Exact Solution ... 14

3 Foucault’s Pendulum ... 23
 3.1 Solution of the Differential Equations 26
 3.2 Discussion of the Solution ... 28

Part II Mechanics of Particle Systems

4 Degrees of Freedom .. 41
 4.1 Degrees of Freedom of a Rigid Body 41

5 Center of Gravity ... 43

6 Mechanical Fundamental Quantities of Systems of Mass Points 65
 6.1 Linear Momentum of the Many-Body System 65
 6.2 Angular Momentum of the Many-Body System 65
 6.3 Energy Law of the Many-Body System 68
 6.4 Transformation to Center-of-Mass Coordinates 70
 6.5 Transformation of the Kinetic Energy 72

Part III Vibrating Systems

7 Vibrations of Coupled Mass Points ... 81
 7.1 The Vibrating Chain ... 88

8 The Vibrating String .. 101
 8.1 Solution of the Wave Equation ... 103
 8.2 Normal Vibrations ... 105

9 Fourier Series .. 121
10 The Vibrating Membrane .. 133
 10.1 Derivation of the Differential Equation 133
 10.2 Solution of the Differential Equation 135
 10.3 Inclusion of the Boundary Conditions 136
 10.4 Eigenfrequencies 137
 10.5 Degeneracy ... 137
 10.6 Nodal Lines .. 138
 10.7 General Solution 138
 10.8 Superposition of Node Line Figures 140
 10.9 The Circular Membrane 141
 10.10 Solution of Bessel’s Differential Equation 144

Part IV Mechanics of Rigid Bodies

11 Rotation About a Fixed Axis 161
 11.1 Moment of Inertia 162
 11.2 The Physical Pendulum 166

12 Rotation About a Point 185
 12.1 Tensor of Inertia 185
 12.2 Kinetic Energy of a Rotating Rigid Body 187
 12.3 The Principal Axes of Inertia 188
 12.4 Existence and Orthogonality of the Principal Axes 189
 12.5 Transformation of the Tensor of Inertia 193
 12.6 Tensor of Inertia in the System of Principal Axes 195
 12.7 Ellipsoid of Inertia 196

13 Theory of the Top ... 209
 13.1 The Free Top ... 209
 13.2 Geometrical Theory of the Top 210
 13.3 Analytical Theory of the Free Top 213
 13.4 The Heavy Symmetric Top: Elementary Considerations .. 224
 13.5 Further Applications of the Top 228
 13.6 The Euler Angles 238
 13.7 Motion of the Heavy Symmetric Top 241

Part V Lagrange Equations

14 Generalized Coordinates 259
 14.1 Quantities of Mechanics in Generalized Coordinates 264

15 D’Alembert Principle and Derivation of the Lagrange Equations 267
 15.1 Virtual Displacements 267

16 Lagrange Equation for Nonholonomic Constraints 301

17 Special Problems .. 311
 17.1 Velocity-Dependent Potentials 311
 17.2 Nonconservative Forces and Dissipation Function (Friction Function) 315
 17.3 Nonholonomic Systems and Lagrange Multipliers 317
Part VI Hamiltonian Theory

18 Hamilton’s Equations .. 327
 18.1 The Hamilton Principle 337
 18.2 General Discussion of Variational Principles 340
 18.3 Phase Space and Liouville’s Theorem 350
 18.4 The Principle of Stochastic Cooling 355

19 Canonical Transformations 365

20 Hamilton–Jacobi Theory .. 383
 20.1 Visual Interpretation of the Action Function S 397
 20.2 Transition to Quantum Mechanics 407

21 Extended Hamilton–Lagrange Formalism 415
 21.1 Extended Set of Euler–Lagrange Equations 415
 21.2 Extended Set of Canonical Equations 419
 21.3 Extended Canonical Transformations 428

22 Extended Hamilton–Jacobi Equation 455

Part VII Nonlinear Dynamics

23 Dynamical Systems ... 463
 23.1 Dissipative Systems: Contraction of the Phase-Space Volume ... 465
 23.2 Attractors .. 467
 23.3 Equilibrium Solutions 469
 23.4 Limit Cycles .. 475

24 Stability of Time-Dependent Paths 485
 24.1 Periodic Solutions 486
 24.2 Discretization and Poincaré Cuts 487

25 Bifurcations ... 495
 25.1 Static Bifurcations 495
 25.2 Bifurcations of Time-Dependent Solutions 499

26 Lyapunov Exponents and Chaos 503
 26.1 One-Dimensional Systems 503
 26.2 Multidimensional Systems 505
 26.3 Stretching and Folding in Phase Space 508
 26.4 Fractal Geometry 509

27 Systems with Chaotic Dynamics 517
 27.1 Dynamics of Discrete Systems 517
 27.2 One-Dimensional Mappings 518

Part VIII On the History of Mechanics

28 Emergence of Occidental Physics in the Seventeenth Century 555
 Notes .. 561
 Recommendations for Further Reading on Theoretical Mechanics 573

Index ... 575
Classical Mechanics
Systems of Particles and Hamiltonian Dynamics
Greiner, W.
2010, XVIII, 580 p. 280 illus., Softcover
ISBN: 978-3-642-03433-6