Contents

Part I Tropical Circulation Systems – A Survey

1 **Large-Scale Tropical Circulations – Some General Aspects**
1.1 Introduction 3
1.2 Tropical Circulation as Part of the Global General Circulation – The Tradewinds 4
1.3 Poleward Boundary of the Tropical Circulation 6
1.4 Heat Sources and Sinks 7
1.4.1 Definition of Heat Sources/Sinks 7
1.4.2 Diabatic/Adiabatic Heat Sources/Sinks 8
1.5 Some Physical and Dynamical Constraints and Conservation Laws 9
1.5.1 Direct and Indirect Circulations 9
1.5.2 Energy Transformations 10
1.5.3 Energy Transfer Process – Carnot’s Cycle 11
1.5.4 Conditional Instability and Convection 11
1.5.5 Cellular Structure – Shallow and Deep Convection 12
1.5.6 Coriolis Control-Variation with Latitude 12
1.5.7 Conservation Laws 13
1.6 Equatorial Circulations 14
1.6.1 Circulation with Heat Sources and Sinks Placed Alternately Along the Equator – Walker Circulations 14
1.7 Meridional Circulation with Heat Source at the Equator and Heat Sinks in Higher Latitudes – The Hadley Circulations 15
1.8 Seasonal Migration of the Equatorial Heat Source 17
1.8.1 Origin of Monsoon 17
1.8.2 The Wave Structure 18
1.8.3 Forcing for the Seasonal Movement of the Equatorial Heat Source 19
1.8.4 Intraseasonal Oscillation of Monsoon 21
1.9 Co-existence of Monsoon, Hadley and Walker Circulations – Inclined Troughs 22
1.10 Definition of Monsoon 24
1.11 Global and Regional Distribution of Monsoons 25
 1.11.1 Tropical Monsoons ... 25
 1.11.2 Extratropical Monsoons ... 26
 1.11.3 Zonal and Meridional Anomalies 27
1.12 Co-existence of Monsoon with Desert Circulation 29

2 Tropical Disturbances (Quasi-stationary Waves, Easterly/Westerly Waves, Lows and Depressions, Cyclonic Storms, and Meso-Scale Disturbances) .. 33
 2.1 Introduction .. 33
 2.2 Quasi-stationary Waves ... 34
 2.2.1 Quasi-stationary Wave in Wind Field 35
 2.2.2 Quasi-stationary Wave in Temperature Fields 36
 2.2.3 Structure of the Quasi-stationary Wave in Circulations . 37
 2.3 Traveling Easterly (E’ly) Waves 39
 2.3.1 Easterly Waves in Tropical North Atlantic 39
 2.3.2 Easterly Waves in Tropical North Pacific 40
 2.3.3 Easterly Waves in the Indian Ocean Region 41
 2.4 Development of Waves ... 43
 2.4.1 Meaning of Development .. 43
 2.4.2 Development of a Quasi-stationary Monsoon Trough into a Depression 45
 2.4.3 Development of a Depression into a Cyclonic Storm/Tropical Cyclone/Hurricane/Typhoon 48
 2.5 Meso-Scale Disturbances and Severe Local Storms in the Tropics 50
 2.5.1 General Considerations – Source of Energy of the Storm 50
 2.5.2 Thunderstorms ... 51
 2.5.3 Hailstorms .. 55
 2.5.4 Tornadoes ... 57

3 Tropical Cyclones/Hurricanes/Typhoons – Their Structure and Properties 61
 3.1 Introduction .. 61
 3.2 Observed Structure of a Tropical Cyclone 61
 3.2.1 Wind Structure .. 63
 3.2.2 Radial and Tangential Components of the Wind 64
 3.2.3 Vertical Motion in a Mean Typhoon 67
 3.2.4 Pressure Distribution .. 68
 3.2.5 Temperature Distribution 69
 3.3 The Eye and the Eye-Wall .. 71
 3.3.1 General Considerations – Formation of the Hurricane Eye 71
 3.3.2 Circulation Inside the Hurricane Eye – Evidence of Meso-Scale Vortices 73
 3.3.3 Concentric Multiple Eye-Walls 75
5 Monsoon over Eastern Asia (Including China, Japan, and Korea) and Adjoining Western Pacific Ocean 123
 5.1 Introduction .. 123
 5.2 Physical Features and Climate 124
 5.3 The Winter Season over Eastern Asia (November–March) 125
 5.3.1 Temperature, Pressure, and Wind 125
 5.3.2 Quasi-stationary Wave in Westerlies – Its Interaction with Traveling Waves – Cold Surges 128
 5.3.3 Winter Rainfall over Eastern Asia 130
 5.4 Airmass Transformations and Cyclogenesis over the Oceans 130
 5.4.1 Cyclonic Disturbances over Eastern Asia and Neighboring Ocean 130
 5.5 Transition Period (April) ... 133
 5.5.1 Development of ‘Heat Low’ over Eastern Asia 134
 5.6 Origin of Monsoon over Eastern Asia 134
 5.7 Seasonal March of the Summer Monsoon 136
 5.8 Stationary States and Jumps .. 137
 5.9 Meteorological Developments Associated with the Jump to Central China ... 137
 5.9.1 Tibetan Plateau Monsoon 138
 5.9.2 The Meiyu (Plum Rain) Front over China 139
 5.10 Jump of East Asian Monsoon to Extratropical Latitudes 142
 5.10.1 Evidence of Jump in Climatological Fields 143
 5.10.2 Zonal Anomaly in Seasonal Variations 145
 5.10.3 Climatological Rainfall over Eastern Asia During July ... 146
 5.11 Monsoon over Japan .. 147
 5.11.1 Geographical Location and Climate 147
 5.11.2 The Baiu Front – Its Seasonal Movement and Activity ... 147
 5.12 Monsoon over Korea .. 150
 5.12.1 Historical Background ... 150
 5.12.2 Physical Features and Climate 150
 5.12.3 Winter Monsoon over Korea 150
 5.12.4 Summer Monsoon over Korea – Changma Season 151
 5.12.5 Korea’s Climatic Zones (After McCune, 1941) 152

6 Meteorology of the Maritime Continent (Region – III)
 (Comprising Philippines, Indonesia and Equatorial
 Western Pacific Ocean) ... 155
 6.1 Introduction .. 155
 6.2 Climate of the Maritime Continent 156
 6.2.1 Pressure .. 156
 6.2.2 Temperature .. 157
 6.2.3 Relative Humidity and Cloudiness 158
 6.2.4 Rainfall .. 158
6.3 Factors Affecting the Climate of the Maritime Continent 159
 6.3.1 Geographical Location and Topography 159
 6.3.2 Ocean Currents ... 160
 6.3.3 Equatorial Trough, the ITCZ and Monsoons 160
6.4 The Maritime Continent – A Heat Source ... 165
6.5 The Maritime Continent and the ENSO ... 168
7 Monsoon over Australia (Region – IV) ... 171
 7.1 Introduction – Location and Physical Features 171
 7.2 Early Studies ... 172
 7.3 Climate of Australia and Surrounding Oceans 173
 7.3.1 Ocean Surface Temperature (SST, C) 173
 7.3.2 Air Temperatures ... 174
 7.3.3 Atmospheric Pressure (Isobaric Height) 176
 7.3.4 Wind and Circulation .. 177
 7.4 Monsoon over Australia ... 182
 7.4.1 Onset of Monsoon ... 182
 7.4.2 Co-existence of Monsoon and Hadley Circulations – Interhemispheric Movement ... 183
 7.4.3 Summer Monsoon Rainfall over Australia 185
 7.5 Annual Rainfall of Australia and Its Seasonal Variability 187
 7.5.1 Annual Rainfall ... 187
 7.5.2 Seasonal Variability ... 188
 7.6 Variability of Australian Rainfall with ENSO 189
 7.7 Tropical Disturbances in the Australian Region – Depressions and Cyclones ... 189
 7.8 Tropical-Midlatitude Interaction in the Australian Region 191
 7.8.1 Northerly and Southerly Bursters 192
8 Monsoon over Africa (Region – V) ... 195
 8.1 Introduction ... 195
 8.2 Physical Features and Environment ... 196
 8.3 Climates of Africa and Surrounding Oceans 198
 8.3.1 Sea Surface Temperature and Wind 198
 8.3.2 Air Temperature ... 198
 8.3.3 Isobaric Height (gpm) .. 199
 8.3.4 Wind and Circulation .. 201
 8.3.5 Rainfall over Africa ... 205
 8.4 Equatorial Westerlies over Africa ... 207
 8.5 The Equatorial Trough over North Africa – Its Zonal Anomaly 209
 8.6 Structure of the Circulation Associated with the Equatorial Trough ... 210
 8.6.1 Zonal Circulation ... 211
 8.6.2 Meridional Circulation .. 211
 8.7 Origin of African Wave Disturbances ... 212
 8.7.1 Early Studies ... 212
8.7.2 Influence of Midlatitude Forcing 213
8.7.3 Sudan – The Breeding Ground 217
8.7.4 Role of Topography 219
8.8 Structure, Development and Movement of the Waves 219
8.9 Interaction of South African Monsoon with Midlatitude
Waves of the Southern Hemisphere 220

9 Monsoon over South America (Region – VI) 223
9.1 Introduction .. 223
9.2 Physical Features and Environment 224
9.2.1 Physical Dimension of the Continent 224
9.2.2 Topography 225
9.2.3 Oceanic Environment and Its Influence on Climate . 225
9.3 Climatological Features 227
9.3.1 Air Temperature and Pressure 227
9.3.2 Atmospheric Circulation – Monsoon 230
9.3.3 Co-existence of Monsoon and Hadley Circulations . 233
9.3.4 Rainfall over South America 235
9.4 Quasi-stationary Waves and Their Associated Weather . 236
9.4.1 Weather Phenomena Related to the Northern Boundary 238
9.4.2 Weather Phenomena Associated with the Southern Boundary . 240
9.5 Tropical Disturbances over South America 241
9.5.1 Types of Disturbances 241
9.5.2 Monsoon Lows and Depressions 242
9.5.3 Upper-Tropospheric Cyclonic Vortices 243
9.6 A Tropical Cyclone over the South Atlantic Ocean 248
9.6.1 Introduction 248
9.6.2 Formation of the Initial Vortex – Interaction with W’ly Waves . 250
9.6.3 Structure, Movement and Development of the Vortex . 251

Part III Extratropical Monsoons

10 Monsoon over Central America and Adjoining
Southwestern North America (Region – VII) 255
10.1 Introduction 255
10.2 Heat Sources and Sinks and Their Seasonal Movement . 256
10.3 The Climate of Central America and Adjoining North America . 257
10.3.1 Surface Temperatures and Winds 257
10.3.2 Upper Air Temperatures 259
10.3.3 Upper Air Height (gpm) 260
10.3.4 Upper Air Wind Field and Circulation 262
10.4 Rainfall over Central America and Adjoining Areas ... 264
10.4.1 Annual Rainfall over Mexico 267
10.4.2 Source of Moisture for Rainfall over the Arizona-Sonoran Desert 268

10.5 Some Characteristic Features of Weather over Central America 270
10.5.1 Weather Associated with W’ly Waves 270
10.5.2 Weather Associated with ‘Northers’ 270
10.5.3 Land and Sea Breezes on the Pacific Coast of Mexico 271
10.5.4 Temporales of the Caribbean Sea and the Gulf of Mexico 272
10.5.5 Hurricanes and Tropical Storms 272

11 Extratropical Monsoon over North America 275
11.1 Introduction 275
11.2 Climatological Background of North American Monsoon 275
11.2.1 Physical Features of the Land 276
11.2.2 Semi-permanent High and Low Pressure Systems over Oceans 277
11.3 The Seasonal Movement of Heat Sources and Sinks 278
11.4 Seasonal Circulations – Monsoons 279
11.4.1 The Winter Monsoon (December–February) 279
11.4.2 The Spring Transition Season (March–May) 281
11.4.3 The Summer Monsoon (June–August) 281
11.4.4 The Autumn Transition Season (September–November) 286
11.5 Interaction of Monsoons with W’ly Wave Disturbances 287
11.6 Some Characteristic Features of East Coast Monsoon 287
11.6.1 Seasonal Variations and Reversals 287
11.6.2 Monsoonal Characteristics of the East Coast Region 288
11.7 Role of the Appalachian Mountain Range – Leeside Cyclogenesis – Northeast Storms 288
11.8 Interaction of Monsoon with Storms and Hurricanes 289

Appendix: Meanings of Uncommon Words/Terms Used in the Book 291

References 299

Index 313
Tropical Circulation Systems and Monsoons
Saha, K.
2010, XIX, 324 p., Hardcover
ISBN: 978-3-642-03372-8