Contents

1 Introduction ... 1
 1.1 On Spatial Data Mining and Knowledge Discovery 1
 1.2 What Makes Spatial Data Mining Different 2
 1.3 On Spatial Knowledge .. 3
 1.4 On Spatial Data .. 4
 1.5 Basic Tasks of Knowledge Discovery in Spatial Data 5
 1.6 Issues of Knowledge Discovery in Spatial Data 10
 1.7 Methodological Background for Knowledge Discovery in Spatial Data .. 11
 1.8 Organization of the Book .. 12

2 Discovery of Intrinsic Clustering in Spatial Data 13
 2.1 A Brief Background About Clustering 13
 2.2 Discovery of Clustering in Space by Scale Space Filtering ... 17
 2.2.1 On Scale Space Theory for Hierarchical Clustering 18
 2.2.2 Hierarchical Clustering in Scale Space 20
 2.2.3 Cluster Validity Check 25
 2.2.4 Clustering Selection Rules 29
 2.2.5 Some Numerical Examples 31
 2.2.6 Discovering Land Covers in Remotely Sensed Images 32
 2.2.7 Mining of Seismic Belts in Vector-Based Databases 36
 2.2.8 Visualization of Temporal Seismic Activities via Scale Space Filtering ... 42
 2.2.9 Summarizing Remarks on Clustering by Scale Space Filtering .. 46
 2.3 Partitioning of Spatial Data by a Robust Fuzzy Relational Data Clustering Method .. 49
 2.3.1 On Noise and Scale in Spatial Partitioning 50
 2.3.2 Clustering Algorithm with Multiple Scale Parameters for Noisy Data .. 51
 2.3.3 Robust Fuzzy Relational Data Clustering Algorithm 54
2.3.4 Numerical Experiments .. 57
2.4 Partitioning of Spatial Object Data by Unidimensional Scaling 61
 2.4.1 A Note on the Use of Unidimensional Scaling 61
 2.4.2 Basic Principle of Unidimensional Scaling in Data Clustering ... 62
 2.4.3 Analysis of Simulated Data .. 64
 2.4.4 UDS Clustering of Remotely Sensed Data 66
2.5 Unraveling Spatial Objects with Arbitrary Shapes Through Mixture Decomposition Clustering 70
 2.5.1 On Noise and Mixture Distributions in Spatial Data 70
 2.5.2 A Remark on the Mining of Spatial Features with Arbitrary Shapes .. 74
 2.5.3 A Spatial-Feature Mining Model (RFMM) Based on Regression-Class Mixture Decomposition (RCMD) 75
 2.5.4 The RFMM with Genetic Algorithm (RFMM-GA) 78
 2.5.5 Applications of RFMM-GA in the Mining of Features in Remotely Sensed Images .. 80
2.6 Cluster Characterization by the Concept of Convex Hull 84
 2.6.1 A Note on Convex Hull and its Computation 84
 2.6.2 Basics of the Convex Hull Computing Neural Network (CHCNN) Model ... 86
 2.6.3 The CHCNN Architecture .. 89
 2.6.4 Applications in Cluster Characterization 94
3 Statistical Approach to the Identification of Separation Surface for Spatial Data ... 97
 3.1 A Brief Background About Statistical Classification 97
 3.2 The Bayesian Approach to Data Classification 100
 3.2.1 A Brief Description of Bayesian Classification Theory 100
 3.2.2 Naive Bayes Method and Feature Selection in Data Classification ... 101
 3.2.3 The Application of Naive Bayes Discriminant Analysis in Client Segmentation for Product Marketing 102
 3.2.4 Robust Bayesian Classification Model 112
 3.3 Mixture Discriminant Analysis .. 113
 3.3.1 A Brief Statement About Mixture Discriminant Analysis 113
 3.3.2 Mixture Discriminant Analysis by Optimal Scoring 114
 3.3.3 Analysis Results and Interpretations 115
 3.4 The Logistic Model for Data Classification 117
 3.4.1 A Brief Note About Using Logistic Regression as a Classifier .. 117
 3.4.2 Data Manipulation for Client Segmentation 118
 3.4.3 Logistic Regression Models and Strategies for Credit Card Promotion ... 119
 3.4.4 Model Comparisons and Validations 125
3.5 Support Vector Machine for Spatial Classification 130
 3.5.1 Support Vector Machine as a Classifier 130
 3.5.2 Basics of Support Vector Machine 131
 3.5.3 Experiments on Feature Extraction and Classification
 by SVM .. 136

4 Algorithmic Approach to the Identification of Classification
Rules or Separation Surface for Spatial Data 143
 4.1 A Brief Background About Algorithmic Classification 143
 4.2 The Classification Tree Approach to the Discovery of Classification
 Rules in Data .. 145
 4.2.1 A Brief Description of Classification and Regression tree
 (CART) ... 145
 4.2.2 Client Segmentation by CART 148
 4.3 The Neural Network Approach to the Classification
of Spatial Data .. 156
 4.3.1 On the Use of Neural Networks in Spatial Classification 156
 4.3.2 The Knowledge-Integrated Radial Basis Function (RBF)
 Model for Spatial Classification 159
 4.3.3 An Elliptical Basis Function Network for Spatial
 Classification .. 172
 4.4 Genetic Algorithms for Fuzzy Spatial Classification Systems 183
 4.4.1 A Brief Note on Using GA to Discover Fuzzy
 Classification Rules ... 183
 4.4.2 A General Framework of the Fuzzy Classification System ... 184
 4.4.3 Fuzzy Rule Acquisition by GANGO 186
 4.4.4 An Application in the Classification of Remote
 Sensing Data .. 194
 4.5 The Rough Set Approach to the Discovery of Classification
Rules in Spatial Data .. 196
 4.5.1 Basic Ideas of the Rough Set Methodology for Knowledge
 Discovery ... 196
 4.5.2 Basic Notions Related to Spatial Information Systems
 and Rough Sets .. 198
 4.5.3 Interval-Valued Information Systems and Data
 Transformation .. 200
 4.5.4 Knowledge Discovery in Interval-Valued Information
 Systems ... 202
 4.5.5 Discovery of Classification Rules for Remotely
 Sensed Data ... 205
 4.5.6 Classification of Tree Species with Hyperspectral Data 214
 4.6 A Vision-Based Approach to Spatial Classification 216
 4.6.1 On Scale and Noise in Spatial Data Classification 216
 4.6.2 The Vision-Based Classification Method 218
 4.6.3 Experimental Results ... 219
4.7 A Remark on the Choice of Classifiers 221

5 Discovery of Spatial Relationships in Spatial Data 223
 5.1 On Mining Spatial Relationships in Spatial Data 223
 5.2 Discovery of Local Patterns of Spatial Association 225
 5.2.1 On the Measure of Local Variations of Spatial Associations ... 225
 5.2.2 Local Statistics and their Expressions as a Ratio of Quadratic Forms .. 227
 5.3 Discovery of Spatial Non-Stationarity Based on the Geographically Weighted Regression Model 236
 5.3.1 On Modeling Spatial Non-Stationarity within the Parameter-Varying Regression Framework 236
 5.3.2 Geographically Weighted Regression and the Local–Global Issue About Spatial Non-Stationarity 238
 5.3.3 Local Variations of Regional Industrialization in Jiangsu Province, P.R. China 244
 5.3.4 Discovering Spatial Pattern of Influence of Extreme Temperatures on Mean Temperatures in China 250
 5.4 Testing for Spatial Autocorrelation in Geographically Weighted Regression ... 254
 5.5 A Note on the Extentions of the GWR Model 258
 5.6 Discovery of Spatial Non-Stationarity Based on the Regression-Class Mixture Decomposition Method 260
 5.6.1 On Mixture Modeling of Spatial Non-Stationarity in a Noisy Environment .. 260
 5.6.2 The Notion of a Regression Class 262
 5.6.3 The Discovery of Regression Classes under Noise Contamination ... 263
 5.6.4 The Regression-Class Mixture Decomposition (RCMD) Method for knowledge Discovery in Mixed Distribution ... 267
 5.6.5 Numerical Results and Observations 271
 5.6.6 Comments About the RCMD Method 272
 5.6.7 A Remote Sensing Application 275
 5.6.8 An Overall View about the RCMD Method 276

6 Discovery of Structures and Processes in Temporal Data 277
 6.1 A Note on the Discovery of Generating Structures or Processes of Time Series Data .. 277
 6.2 The Wavelet Approach to the Mining of Scaling Phenomena in Time Series Data .. 279
 6.2.1 A Brief Note on Wavelet Transform 279
 6.2.2 Basic Notions of Wavelet Analysis 280
 6.2.3 Wavelet Transforms in High Dimensions 285
 6.2.4 Other Data Mining Tasks by Wavelet Transforms 286
 6.2.5 Wavelet Analysis of Runoff Changes in the Middle and Upper Reaches of the Yellow River in China 286
<table>
<thead>
<tr>
<th>6.2.6 Wavelet Analysis of Runoff Changes of the Yangtze River Basin</th>
<th>289</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 Discovery of Generating Structures of Temporal Data with Long-Range Dependence</td>
<td>292</td>
</tr>
<tr>
<td>6.3.1 A Brief Note on Multiple Scaling and Intermittency of Temporal Data</td>
<td>292</td>
</tr>
<tr>
<td>6.3.2 Multifractal Approach to the Identification of Intermittency in Time Series Data</td>
<td>293</td>
</tr>
<tr>
<td>6.3.3 Experimental Study on Intermittency of Air Quality Data Series</td>
<td>297</td>
</tr>
<tr>
<td>6.4 Finding the Measure Representation of Time Series with Intermittency</td>
<td>301</td>
</tr>
<tr>
<td>6.4.1 Multiplicative Cascade as a Characterization of the Time Series Data</td>
<td>301</td>
</tr>
<tr>
<td>6.4.2 Experimental Results</td>
<td>302</td>
</tr>
<tr>
<td>6.5 Discovery of Spatial Variability in Time Series Data</td>
<td>307</td>
</tr>
<tr>
<td>6.5.1 Multifractal Analysis of Spatial Variability Over Time</td>
<td>307</td>
</tr>
<tr>
<td>6.5.2 Detection of Spatial Variability of Rainfall Intensity</td>
<td>309</td>
</tr>
<tr>
<td>6.6 Identification of Multifractality and Spatio-Temporal Long Range Dependence in Multiscaling Remote Sensing</td>
<td>312</td>
</tr>
<tr>
<td>6.6.1 A Note on Multifractality and Long-Range Dependence in Remote Sensing Data</td>
<td>312</td>
</tr>
<tr>
<td>6.6.2 A Proposed Methodology for the Analysis of Multifractality and Long-Range Dependence in Remote Sensing Data</td>
<td>314</td>
</tr>
<tr>
<td>6.7 A Note on the Effect of Trends on the Scaling Behavior of Time Series with Long-Range Dependence</td>
<td>317</td>
</tr>
</tbody>
</table>

7 Summary and Outlooks	321
7.1 Summary	321
7.2 Directions for Further Research	322
7.2.1 Discovery of Hierarchical Knowledge Structure from Relational Spatial Data	322
7.2.2 Errors in Spatial Knowledge Discovery	324
7.2.3 Other Challenges	326
7.3 Concluding Remark	327

Bibliography 329

Author Index 351

Subject Index 357
Knowledge Discovery in Spatial Data
Leung, Y.
2009, XXIX, 360 p. 113 illus., Hardcover
ISBN: 978-3-642-02663-8