The understanding of empirical traffic congestion occurring on unsignalized multi-lane highways and freeways is a key for effective traffic management, control, organization, and other applications of transportation engineering. However, the traffic flow theories and models that dominate up to now in transportation research journals and teaching programs of most universities cannot explain either traffic breakdown or most features of the resulting congested patterns. These theories are also the basis of most dynamic traffic assignment models and freeway traffic control methods, which therefore are not consistent with features of real traffic.

For this reason, the author introduced an alternative traffic flow theory called three-phase traffic theory, which can predict and explain the empirical spatiotemporal features of traffic breakdown and the resulting traffic congestion. A previous book “The Physics of Traffic” (Springer, Berlin, 2004) presented a discussion of the empirical spatiotemporal features of congested traffic patterns and of three-phase traffic theory as well as their engineering applications.

Rather than a comprehensive analysis of empirical and theoretical results in the field, the present book includes no more empirical and theoretical results than are necessary for the understanding of vehicular traffic on unsignalized multi-lane roads. The main objectives of the book are to present an “elementary” traffic flow theory and control methods as well as to show links between three-phase traffic theory and earlier traffic flow theories. The need for such a book follows from many comments of colleagues made after publication of the book “The Physics of Traffic”.

Another important objective of this book is to give an introduction to methods of spatiotemporal traffic congestion recognition and prediction, on-ramp metering, speed limit control, and some other freeway control and dynamic management methods whose theoretical basis is three-phase traffic theory. The importance of this subject can be explained as follows. Almost all other traffic flow theories and the associated freeway control and dynamic management methods assume the existence of a particular (fixed or stochastic) highway capacity of free flow at a highway bottleneck and, therefore, they use the highway capacity as a basic parameter of dynamic traffic management models. In this book we show and explain how and why the application of a particular highway capacity in methods for dynamic
freeway traffic management like on-ramp metering, speed limit control, or dynamic traffic assignment, is not consistent with features of real traffic.

Through an application of the principle “no more results than are necessary”, I hope to present traffic flow theory and control in a manner understandable to a broad audience of readers interested in traffic phenomena. With this aim, the book also includes an extended glossary with definitions and explanations of terms used.

I thank Ralf G Herrtwich and Matthias Schulze for their support as well as many other my colleagues at the Daimler Company, in particular, Hubert Rehborn, Gerhard Nöcker, Andreas Hiller, Achim Brakemaier, Ines Maiwald-Hiller, Winfried Kronjäger for fruitful discussions and advice. I thank also Dietrich Wolf for useful suggestions. Particular thanks are to Achim Brakemaier, Viktor Friesen, Sergey Klenov, Gerhard Nöcker, Andreas Hiller, Winfried Kronjäger, Jochem Palmer, and Hubert Rehborn who have read the book and made many useful comments. I thank also Hesham Rakha, Hani Mahmassani, and Jorge Laval for helpful discussions about approaches to traffic flow modeling in Woods Hole in July 2008. Many thanks to Rüdiger Hain, Oliver Baumann and all other friends who have encouraged me while writing this book. I am grateful to Sergey Klenov for his help with numerical simulations and the preparation of illustrations for the book. Finally, I thank my wife, Tatiana Kerner, for her help and understanding.

Stuttgart, May 2009

Boris Kerner
Introduction to Modern Traffic Flow Theory and Control
The Long Road to Three-Phase Traffic Theory
Kerner, B.S.
2009, XIII, 265 p., Hardcover
ISBN: 978-3-642-02604-1