3.2 Main Results .. 67
 3.2.1 Notation ... 67
 3.2.2 Stabilizability in the Delay Parameter 70
 3.2.3 Controller Design 75
3.3 Illustrative Examples ... 76
 3.3.1 Second-Order System 77
 3.3.2 Stabilizing a Chain of Oscillators 78
 3.3.3 Multiple Crossing Frequencies Toward (in)Stability 80
3.4 Concluding Remarks .. 82
References ... 83

4 Time-Delayed Feedback Control: From Simple Models to Lasers
 and Neural Systems ... 85
Eckehard Schöll, Philipp Hövel, Valentin Flunkert,
and Markus A. Dahlem
4.1 Introduction .. 85
4.2 Time-Delayed Feedback Control of Generic Systems 87
 4.2.1 Stabilization of Unstable Steady States 87
 4.2.2 Asymptotic Properties100
 4.2.3 Beyond the Odd Number Limitation of Unstable
 Periodic Orbits ...107
 4.2.4 Stabilizing Periodic Orbits Near a Fold Bifurcation116
4.3 Time-Delayed Control of Optical Systems122
 4.3.1 Stabilizing Continuous-Wave Laser Emission
 by Phase-Dependent Coupling123
 4.3.2 Noise Suppression by Time-Delayed Feedback125
4.4 Time-Delayed Control of Neuronal Dynamics130
 4.4.1 Model of Two Coupled Neurons131
 4.4.2 Control of Stochastic Synchronization133
 4.4.3 Dynamics of Delay-Coupled Neurons136
 4.4.4 Delayed Self-Feedback and Delayed Coupling140
References ...144

5 Finite Propagation Speeds in Spatially Extended Systems151
Axel Hutt
5.1 Introduction ..151
5.2 Dynamics in the Absence of Noise152
 5.2.1 A Neural Field Model152
 5.2.2 The Generic Model158
5.3 Dynamics In The Presence of Noise168
 5.3.1 General Stability Study168
 5.3.2 Application to a Specific Model171
References ...175
6 Stochastic Delay-Differential Equations 177
André Longtin
6.1 Introduction .. 177
6.2 The Fundamental Issue 178
6.3 Linear SDDEs .. 180
6.4 Small Delay Expansion 181
6.5 Reduction Techniques 184
 6.5.1 Reducing the Dimensionality 184
 6.5.2 Crossing Time Problems 187
6.6 Stochastic Delayed Neurodynamics188
 6.6.1 Neural Noise and Delays 188
 6.6.2 Neural Control 189
 6.6.3 Neural Population Dynamics 189
 6.6.4 Simplified Stochastic Spiking Model with Delay191
6.7 Conclusion .. 192
References ... 193

7 Global Convergent Dynamics of Delayed Neural Networks 197
Wenlian Lu and Tianping Chen
7.1 Introduction .. 197
7.2 Stability of Delayed Neural Networks201
 7.2.1 Preliminaries ... 201
 7.2.2 Delayed Hopfield Neural Networks204
 7.2.3 Delayed Cohen–Grossberg Competitive and Cooperative
 Networks ... 209
7.3 Periodicity and Almost Periodicity of Delayed Neural Networks .217
 7.3.1 Delayed Periodic Hopfield Neural Networks218
 7.3.2 Delayed Periodic Cohen–Grossberg Competitive
 and Cooperative Neural Networks 221
 7.3.3 Delayed Almost Periodic Hopfield Neural Networks226
7.4 Delayed Neural Network with Discontinuous Activations 232
 7.4.1 Preliminaries ... 234
 7.4.2 Stability of Equilibrium 241
 7.4.3 Convergence of Periodic and Almost Periodic Orbits245
7.5 Review and Comparison of Literature 252
References ... 258

8 Stability and Hopf Bifurcation for a First-Order Delay Differential
 Equation with Distributed Delay 263
Fabien Crauste
8.1 Introduction .. 263
8.2 Definitions and Hopf Bifurcation Theorem 265
8.3 State of the Art and Objectives 269
 8.3.1 The Classical Linear Discrete Delay Differential Equation ... 269
9 Deterministic Time-Delayed Traffic Flow Models: A Survey
Rifat Sipahi and Silviu-Iulian Niculescu

9.1 Introduction to Traffic Flow Problem .. 298
9.2 Classification of Traffic Models .. 299
 9.2.1 Macroscopic Models ... 300
 9.2.2 Microscopic Models ... 300
 9.2.3 Mesoscopic Models ... 301
9.3 Empirical and Simulation Studies ... 301
 9.3.1 Experimental Studies ... 301
 9.3.2 Software Development ... 303
9.4 Time-Delay Effects in Traffic Flow Models 304
 9.4.1 What is the Origin of Time Delay? .. 304
 9.4.2 What is the Measure of Time Delay? ... 306
 9.4.3 Development of Time-Delayed Traffic Models 308
9.5 Assumptions and Analysis on Mathematical Models 312
9.6 Interesting Research Topics .. 312
 9.6.1 Linear Analysis with a Single Delay .. 313
 9.6.2 Multiple Delays ... 314
 9.6.3 Time-Varying Delays ... 316
 9.6.4 Improved Traffic Stability with Multiple Vehicle Following 316
 9.6.5 Multiple Vehicle Following Under Multiple Delays 316
 9.6.6 Nonlinear Time-Delayed Traffic Dynamics 317
 9.6.7 Optimal Velocity Model with Time Delay and Stochastic Process 317
 9.6.8 Effects of Drivers' Memory .. 317
9.7 Conclusion and Discussion .. 318
References ... 319

Index ... 323
Complex Time-Delay Systems
Theory and Applications
Atay, F.M. (Ed.)
2010, XII, 328 p., Hardcover
ISBN: 978-3-642-02328-6