Contents

1 **Introduction** ... 1
 1.1 Challenges of Grid Programming 2
 1.2 The Role of Middleware for the Grid 5
 1.3 Communication Technologies for Distributed Computing 7
 1.3.1 Java Remote Method Invocation (RMI) 7
 1.3.2 Common Object Request Broker Architecture (CORBA) 9
 1.3.3 Containers for Components & Services 10
 1.4 Shortcomings in State-Of-The-Art Grid Middleware 16
 1.4.1 Responsibilities of the Middleware User 16
 1.4.2 Requirements for the Software Components 17

2 **HOCs: Software Components for Grid Programming** 19
 2.1 Higher-Order Components (HOCs) 20
 2.1.1 Motivation for HOCs .. 21
 2.1.2 Grid Programming Using HOCs 22
 2.1.3 Introducing Code Mobility to the Middleware 24
 2.1.4 Polymorphism and Type Checking for Code Parameters 26
 2.1.5 First Application Case Study: Julia Sets 30
 2.2 HOCs and Grid Middleware ... 31
 2.2.1 An Analysis of the Requirements of the Grid Platform
 without Components .. 31
 2.2.2 Bridging Middleware and Application with HOCs 36
 2.2.3 Case Study Revisited: Using the Farm-HOC 38
 2.2.4 Performance Experiments on a Wide-Area Testbed 40
 2.2.5 HOCs and Hand-Written Code: A Performance Comparison . 41
 2.3 APIs for Grid Application Programming with HOCs 42
 2.4 Adaptability of HOCs ... 51
 2.4.1 Code Parameters for Adaptation 52
 2.4.2 Case Study: From Farm to Wavefront 53
 2.5 Discussion: Adaptation vs. AOP 60
3 Higher-Order Component Service Architecture (HOC-SA)
3.1 Service-Oriented Grid Programming Using the HOC-SA
 3.1.1 How Code Mobility Works: HOC-SA Code Service & Remote Code Loader
 3.1.2 Parameter Databases in the HOC-SA
3.2 HOCs and Web Services
 3.2.1 Web Services
 3.2.2 Components and Resources
 3.2.3 The HOC-SA Component Repository
 3.2.4 The HOC-SA Portal
3.3 A Comparison of the HOC-SA and Globus WS-GRAM
 3.3.1 Grid Programming with WS-GRAM and the HOC-SA
 3.3.2 Application Types for HOC-SA and WS-GRAM
 3.3.3 Response Times: HOC-SA vs. WS-GRAM
3.4 MPI, Skeletons and Web Services: Integrating Grid Technologies
 3.4.1 A Gateway for Bridging between Web Services and MPI
 3.4.2 Example: Discrete Wavelet Transform (DWT)
 3.4.3 Wavelet Transform in General
 3.4.4 DWT for Image Processing
 3.4.5 DWT on the Grid Using the Lifting-HOC
 3.4.6 Portable Parameters for the Lifting-HOC
 3.4.7 An Adaptation of the Lifting-HOC
 3.4.8 Experimental Performance Evaluation
 3.4.9 Discussion: Interoperability and Portable Code
3.5 A HOC-SA Based Map/Reduce Implementation
 3.5.1 Cloud Computing Technologies for the HOC-SA
 3.5.2 MapReduce and Hadoop
 3.5.3 HOC-SA Features for Map/Reduce on the Grid
3.6 Summary of HOC-SA Features

4 Applications of Higher-Order Components
4.1 Clayworks: A Collaborative Simulation Environment
 4.1.1 The 3-tier Architecture of Clayworks
 4.1.2 The Deformation-HOC for Parallel Simulations
4.2 Protein Sequence Analysis with HOCs
 4.2.1 The Alignment Problem in Bioinformatics
 4.2.2 Circular Permutations of DNA
 4.2.3 The Alignment-HOC and its Code Parameters
 4.2.4 Using an Alternative Traceback
 4.2.5 Optimizations of the Alignment-HOC
 4.2.6 Experiments with the Alignment-HOC
4.3 Conclusions from Using HOCs in Large-Scale applications
5 HOCs with Embedded Scheduling and Loop Parallelization

5.1 User-Transparent Grid Scheduling 132
 5.1.1 The KOALA Grid Scheduling Infrastructure 133
 5.1.2 Extensions of KOALA for User-Transparent Scheduling .. 135
 5.1.3 Integrating KOALA & HOC-SA 136
 5.1.4 A HOC-Aware Scheduling Algorithm 138
 5.1.5 HOC Scheduling Cost-Functions 138
 5.1.6 Scheduling Large-Scale Applications 140
 5.1.7 Experiments with HOCs and KOALA 141
 5.1.8 Conclusions from the Scheduling Experiments 144

5.2 Parallelization of Code Parameters in HOCs 144
 5.2.1 The Internal Compute Farm of the LooPo-HOC 145
 5.2.2 Transforming Loop Nests into Task Graphs 146
 5.2.3 Integrating Loop Parallelization with the Grid 148
 5.2.4 Case Study: The SOR Equation System Solver 150
 5.2.5 Experiments ... 152

5.3 Combining HOCs with Related technologies: ProActive, SOFA and the GCM 153
 5.3.1 Combining HOCs with ProActive, the GCM and SOFA 155
 5.3.2 Creation of Web Services Using ProActive 158

5.4 Discussion: HOCs and Different Tools for Distributed Computing . 159

6 Conclusions and Related Work

6.1 New Contributions ... 161

6.2 Related Work ... 162
 6.2.1 The Real-Time Framework (RTF) 163
 6.2.2 A Survey of Related Component Models 164
 6.2.3 The Skeleton Model 164
 6.2.4 CCA: The Common Component Architecture 165
 6.2.5 CCM: The CORBA Component Model 166
 6.2.6 Java Servlets and JSPs 166
 6.2.7 Enterprise Java Beans and .NET Components 166
 6.2.8 The Web 2.0 .. 168
 6.2.9 The Semantic Web 168

6.3 Future Work ... 169

Bibliography

References ... 171
(a) Textbooks ... 171
(b) Research Papers .. 172
(c) Online References .. 177

Index

... 181
Higher-Order Components for Grid Programming
Making Grids More Usable
Dünnweber, J.; Gorlatch, S.
2009, XIII, 186 p., Hardcover
ISBN: 978-3-642-00840-5