Contents

Part I Surveying Theories and Philosophies of Mathematics Education

<table>
<thead>
<tr>
<th>Preface to Part I</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeremy Kilpatrick</td>
<td>References</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surveying Theories and Philosophies of Mathematics Education</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bharath Sriraman and Lyn English</td>
<td>Preliminary Remarks</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Imre Lakatos and Various Forms of Constructivism</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Theory Development</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Theory and Its Role in Mathematics Education</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Changes in Theoretical Paradigms</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Are We Progressing?</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Home-Grown Theories versus Interdisciplinary Views</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>European Schools of Thought in Mathematics Education</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Didactique des Mathématiques—The French Tradition</td>
</tr>
<tr>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>The Royaumont Seminar</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Impact of Theories on Practice</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Closing Summary</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

Part II Reflections on Theories of Learning

<table>
<thead>
<tr>
<th>Preface to Part II Ernest’s Reflections on Theories of Learning</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bharath Sriraman and Nick Haverhals</td>
<td>References</td>
</tr>
<tr>
<td></td>
<td>38</td>
</tr>
</tbody>
</table>

xiii
<table>
<thead>
<tr>
<th>Reflections on Theories of Learning</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Ernest</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>39</td>
</tr>
<tr>
<td>Radical Constructivism</td>
<td>41</td>
</tr>
<tr>
<td>Enactivism</td>
<td>42</td>
</tr>
<tr>
<td>Social Constructivism</td>
<td>43</td>
</tr>
<tr>
<td>Implications for Educational Practice</td>
<td>45</td>
</tr>
<tr>
<td>References</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commentary 1 on Reflections on Theories of Learning by Paul Ernest</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simon Goodchild</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commentary 2 on Reflections on Theories of Learning</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Ernest</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part III On the Theoretical, Conceptual, and Philosophical Foundations for Research in Mathematics Education</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to Part III</td>
<td>65</td>
</tr>
<tr>
<td>Lyn D. English</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>66</td>
</tr>
<tr>
<td>On the Theoretical, Conceptual, and Philosophical Foundations for Research in Mathematics Education</td>
<td>67</td>
</tr>
<tr>
<td>Frank K. Lester Jr.</td>
<td></td>
</tr>
<tr>
<td>Establishing a Context</td>
<td>67</td>
</tr>
<tr>
<td>The Role of Theory</td>
<td>69</td>
</tr>
<tr>
<td>The Nature of Research Frameworks</td>
<td>69</td>
</tr>
<tr>
<td>Types of Frameworks</td>
<td>70</td>
</tr>
<tr>
<td>The Influence of One’s Philosophical Stance on the Nature of One’s Research</td>
<td>75</td>
</tr>
<tr>
<td>A System for Classifying Systems of Inquiry</td>
<td>76</td>
</tr>
<tr>
<td>The Goals of MER and the Place of Frameworks and Philosophy</td>
<td>81</td>
</tr>
<tr>
<td>References</td>
<td>83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commentary on On the Theoretical, Conceptual, and Philosophical Foundations for Research in Mathematics Education</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guershon Harel</td>
<td></td>
</tr>
<tr>
<td>Rigid Definition of Scientific Research in Education</td>
<td>87</td>
</tr>
<tr>
<td>The Role of Theory</td>
<td>88</td>
</tr>
<tr>
<td>The Role of Mathematical Context</td>
<td>90</td>
</tr>
<tr>
<td>References</td>
<td>93</td>
</tr>
</tbody>
</table>
Part IV Theories of Mathematics Education: Is Plurality a Problem?

Preface to Part IV ... 97
Norma Presmeg

Theories of Mathematics Education: Is Plurality a Problem? 99
Stephen Lerman
Introduction ... 99
A Language of Research Fields 100
Hierarchical Discourses 100
Vertical Knowledge Structures 101
Theories in Use in Mathematics Education 103
Discussion ... 106
Conclusion ... 108
References .. 109

Commentary on Theories of Mathematics Education: Is Plurality a
Problem? .. 111
Eva Jablonka and Christer Bergsten
Expansion of the Knowledge 111
Communication and ‘Translation’ Between Discourses 113
The Social Turn or the Social Branch? 114
A Plurality of Rival Discourses Within an ‘Approach-Paradigm’? 114
Unbalanced Theory Reception 115
Concluding Remark 116
References .. 117

Part V Re-conceptualizing Mathematics Education as a Design Science

Preface to Part V ... 121
Lyn D. English
References .. 122

Re-conceptualizing Mathematics Education as a Design Science ... 123
Richard Lesh and Bharath Sriraman
A Brief History of Our Field 123
What Is a Design Science? 124
Observations about Mathematics Education as a Distinct Field of
Scientific Inquiry 128
Preliminary Implications for Mathematics Education 130
Most of the Systems We Need to Understand Are Complex,
Dynamic, and Continually Adapting 133
What Kind of Explanations are Appropriate for Comparing Two
Complex Systems? 137
Lack of Cumulativeness is Our Foremost Problem 139
Summary—Comparing Ideologies, Theories and Models 142
Concluding Points .. 143
References .. 145

Commentary 1 on Re-conceptualizing Mathematics Education as a
Design Science .. 147
Miriam Amit
References .. 149

Commentary 2 on Re-conceptualizing Mathematics Education as a
Design Science .. 151
Claus Michelsen
References .. 156

Commentary 3 on Re-conceptualizing Mathematics Education as a
Design Science .. 159
David N. Boote
Analysis of Arguments Supporting Design Research 159
Over-stating the Benefits of Design Science 161
Neo-liberal Logic of Employment 162
Educating Design Scientists 164
Conclusions .. 166
References .. 167

Part VI The Fundamental Cycle of Concept Construction Underlying Various Theoretical Frameworks

Preface to Part VI ... 171
Stephen J. Hegedus

The Fundamental Cycle of Concept Construction Underlying Various
Theoretical Frameworks 173
John Pegg and David Tall
Introduction .. 173
Local Cycles .. 176
Process-Object Encapsulation 179
Similar Cycles in Different Modes 182
SOLO and Local Cycles of Development 184
Developments in Global and Local Theory 187
Discussion ... 189
References .. 191
Commentary on The Fundamental Cycle of Concept Construction
Underlying Various Theoretical Frameworks 193
Bettina Dahl
 Introduction .. 193
 Fundamental Cycles of Concept Construction Underlying Various
 Theoretical Frameworks .. 193
 Another Framework of Cognitive Processes 196
 Merging the Frameworks .. 197
 Where Are We as a Field? .. 199
 How Do We Move Forward? ... 200
 Discontinuity and Lack of Progress 201
 Is Complementarity the Solution? 201
 Are We Shooting with a Shotgun Then? 202
 Scientific Growth Through Falsifications 203
 Unified Theory and Truth .. 204
 Conclusions ... 205
 References ... 206

Part VII Symbols and Mediation in Mathematics Education

Preface to Part VII ... 211
 Stephen J. Hegedus

Symbols and Mediation in Mathematics Education 213
 Luis Moreno-Armella and Bharath Sriraman
 Introduction .. 213
 Arithmetic: Ancient Counting Technologies 218
 Mathematics from a Dynamic Viewpoint: The Future of
 Mathematics Education ... 221
 Computational and Cognitive Technologies 222
 Domains of Abstractions ... 224
 Induction and Deduction: The Computer as a Mediating Tool
 Algorithms, Representations and Mathematical Thinking 227
 Representational Fluidity in Dynamic Geometry 230
 References ... 231

Commentary on Symbols and Mediation in Mathematics Education ... 233
 Gerald A. Goldin
 References .. 237
Part VIII Problem Solving Heuristics, Affect, and Discrete Mathematics: A Representational Discussion

Problem Solving Heuristics, Affect, and Discrete Mathematics: A Representational Discussion 241
Gerald A. Goldin
Possibilities for Discrete Mathematics 241
A Problem for Discussion 242
Developing Internal Systems of Representation for Mathematical Thinking and Problem Solving 245
A Heuristic Process: Modeling the General on the Particular ... 247
Affective Considerations .. 248
References .. 249

Commentary on Problem Solving Heuristics, Affect, and Discrete Mathematics: A Representational Discussion 251
Jinfa Cai
Discrete Mathematical Domain and Problem Solving 252
Instructional Objectives ... 253
Problem-Solving Heuristics .. 254
Teaching Mathematics Through Problem Solving: A Future Direction of Problem Solving Research 254
References .. 256

Part IX Problem Solving for the 21st Century

Preface to Part IX ... 261
Jinfa Cai
References .. 262

Problem Solving for the 21st Century .. 263
Lyn English and Bharath Sriraman
A Brief Reflection on Problem-Solving Research 263
Limiting Factors in Problem-Solving Research 266
Pendulum Swings Fuelled by High-Stakes Testing 266
Limited Research on Concept Development through Problem Solving .. 267
Limited Knowledge of Students’ Problem Solving Beyond the Classroom .. 268
Lack of Accumulation of Problem-Solving Research 268
Advancing the Fields of Problem-Solving Research and Curriculum Development ... 269
The Nature of Problem Solving in Today’s World 269
Future-Oriented Perspectives on the Teaching and Learning of Problem Solving 270
Mathematical Modelling 271
Modelling as an Advance on Existing Classroom Problem Solving 273
An Example of an Interdisciplinary Mathematical Modelling Problem 274
Cycles of Development Displayed by One Group of Children ... 276
Students’ Learning in Working The First Fleet Problem .. 278
Mathematical Modelling with Young Learners: A Focus on Statistical Reasoning 279
Concluding Points ... 282
Appendix: First Fleet Data Table 284
References .. 286

Commentary 1 on Problem Solving for the 21st Century ... 291
Peter Grootenboer
Introduction .. 291
Complexity ... 291
Mathematical Modelling 292
Future Directions ... 294
Concluding Comments 295
References .. 295

Commentary 2 on Problem Solving for the 21st Century ... 297
Alan Zollman
Forward to the Past? 300
References .. 301

Part X Embodied Minds and Dancing Brains: New Opportunities for Research in Mathematics Education

Preface to Part X ... 305
Layne Kalbfleisch
References .. 306

Embodied Minds and Dancing Brains: New Opportunities for Research in Mathematics Education ... 309
Stephen R. Campbell
Introduction ... 309
First: Why Bother? 311
Second: Some Preliminary Rationale 312
Third: Cognitive and Educational Neuroscience ... 314
Fourth: Embodied Cognition 316
Fifth: Toward Defining Mathematics Educational Neuroscience ... 319
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sixth: New Questions and New Tools</td>
<td>322</td>
</tr>
<tr>
<td>References</td>
<td>326</td>
</tr>
<tr>
<td>Commentary on Embodied Minds and Dancing Brains: New</td>
<td>333</td>
</tr>
<tr>
<td>Opportunities for Research in Mathematics Education</td>
<td></td>
</tr>
<tr>
<td>Scott Makeig</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>337</td>
</tr>
<tr>
<td>Part XI DNR-Based Instruction in Mathematics as a Conceptual Framework</td>
<td></td>
</tr>
<tr>
<td>Preface to Part XI</td>
<td>341</td>
</tr>
<tr>
<td>Luis Moreno-Armella</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>342</td>
</tr>
<tr>
<td>DNR-Based Instruction in Mathematics as a Conceptual Framework</td>
<td>343</td>
</tr>
<tr>
<td>Guershon Harel</td>
<td></td>
</tr>
<tr>
<td>Research-Based Framework</td>
<td>344</td>
</tr>
<tr>
<td>DNR-Based Lesson</td>
<td>346</td>
</tr>
<tr>
<td>Segment 0: The Problem</td>
<td>346</td>
</tr>
<tr>
<td>Segment I: Students’ Initial Conclusion</td>
<td>347</td>
</tr>
<tr>
<td>Segment II: Necessitating an Examination of the Initial Conclusion</td>
<td>347</td>
</tr>
<tr>
<td>Segment III: The Examination and Its Outcomes</td>
<td>348</td>
</tr>
<tr>
<td>Segment IV: Lesson(s) Learned</td>
<td>351</td>
</tr>
<tr>
<td>DNR Structure</td>
<td>352</td>
</tr>
<tr>
<td>Premises</td>
<td>353</td>
</tr>
<tr>
<td>Concepts</td>
<td>355</td>
</tr>
<tr>
<td>Instructional Principles</td>
<td>357</td>
</tr>
<tr>
<td>Analysis of the Lesson</td>
<td>360</td>
</tr>
<tr>
<td>Final Comments</td>
<td>364</td>
</tr>
<tr>
<td>References</td>
<td>366</td>
</tr>
<tr>
<td>Commentary on DNR-Based Instruction in Mathematics as a Conceptual</td>
<td>369</td>
</tr>
<tr>
<td>Framework</td>
<td></td>
</tr>
<tr>
<td>Bharath Sriraman, Hillary VanSpronsen, and Nick Haverhals</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>377</td>
</tr>
<tr>
<td>Part XII Appreciating Scientificity in Qualitative Research</td>
<td></td>
</tr>
<tr>
<td>Appreciating Scientificity in Qualitative Research</td>
<td>381</td>
</tr>
<tr>
<td>Stephen J. Hegedus</td>
<td></td>
</tr>
<tr>
<td>The Process of Scientific Discovery</td>
<td>381</td>
</tr>
<tr>
<td>The Generation of Truthful Conclusions</td>
<td>384</td>
</tr>
<tr>
<td>Methodological Rigor—Is Truth Rigorous?</td>
<td>387</td>
</tr>
</tbody>
</table>
The Basis of Truth-Finding: What Is the Smorgasbord of Truth, i.e., Do We Have an Establishment of Processes Which Announces Our Universal Set of Truths? .. 388
The 3-fold Doctrine of Scientificity .. 388
Epistemology Identity ... 389
Reflexivity .. 389
The Dynamic ... 390
Conclusion ... 393
References .. 393

Part XIII Understanding a Teacher’s Actions in the Classroom by Applying Schoenfeld’s Theory Teaching-In-Context: Reflecting on Goals and Beliefs

Preface to Part XIII .. 397
Gerald A. Goldin
References ... 398

Understanding a Teacher’s Actions in the Classroom by Applying Schoenfeld’s Theory Teaching-In-Context: Reflecting on Goals and Beliefs .. 401
Günter Törner, Katrin Rolka, Bettina Rösken, and Bharath Sriraman
Introduction ... 401
Understanding a Teacher’s Action in Terms of Knowledge, Goals and Beliefs ... 403
Available Teacher Knowledge ... 403
Teacher Beliefs .. 404
Goals, Their Interdependencies with Beliefs, and Structural Features ... 405
Empirical Approach and Methodology ... 407
Data Sources ... 407
Data Analysis ... 408
Results on Goals and Involved Beliefs ... 409
Formal Goals ... 409
Pedagogical Content Goals and Beliefs, and Their Networking 410
Subject Matter Goals and Beliefs and Their Internal Structure 415
Interpretative Remarks on the Goals and Beliefs Structure 416
Conclusions ... 417
References ... 417

Commentary on Understanding a Teacher’s Actions in the Classroom by Applying Schoenfeld’s Theory Teaching-In-Context: Reflecting on Goals and Beliefs .. 421
Dina Tirosh and Pessia Tsamir
References ... 426
Part XIV Feminist Pedagogy and Mathematics

Preface to Part XIV .. 431
 Gabriele Kaiser
 References .. 433

Feminist Pedagogy and Mathematics ... 435
 Judith E. Jacobs
 Introduction ... 435
 Theoretical Framework: Different Voices 436
 Feminist Pedagogy: The Nature of the Mathematics 440
 Feminist Pedagogy: The Methodology of the Mathematics Classroom 443
 Conclusion .. 445
 References .. 445

Commentary 1 on Feminist Pedagogy and Mathematics 447
 Gilah C. Leder
 Different Faces of Feminism 448
 Feminism and Mathematics Education 449
 Feminist Pedagogy and Mathematics—a Brief Summary 450
 Concluding Comments .. 452
 References .. 453

Commentary 2 on Feminist Pedagogy and Mathematics 455
 Safure Bulut, Bekir S. Gür, and Bharath Sriraman
 Introduction: Revisiting the Gender Debate 455
 Feminist Pedagogy and Mathematics 456
 Education in Turkey ... 457
 Gender and Mathematics Achievement in Turkey 458
 Conclusion ... 464
 References .. 464

Commentary 3 on Feminist Pedagogy and Mathematics 467
 Guðbjörg Pálsdóttir and Bharath Sriraman
 In the Shadow of PISA 2003 in Iceland 467
 A Different Perspective on the Gender Issue 469
 References .. 474

Part XV Networking of Theories—An Approach for Exploiting the Diversity of Theoretical Approaches

Preface to Part XV .. 479
 Tommy Dreyfus
 References .. 481
Networking of Theories—An Approach for Exploiting the Diversity of Theoretical Approaches 483
Angelika Bikner-Ahsbahs and Susanne Prediger

What Are Theories, and for What Are They Needed? 484
Static and Dynamic Views on Theories 485
Function of Theories for Research Practices 486
Diversity as a Challenge, a Resource, and a Starting Point for
Further Development ... 489
Strategies for Connecting Theories—Describing a Landscape ... 491
Introducing the Terms ... 491
Understanding Others and Making own Theories
 Understandable ... 492
 Comparing and Contrasting 493
 Coordinating and Combining 495
 Synthesizing and Integrating 496
 Strategies and Methods for Networking 497
Developing Theories by Networking 500
References .. 503

Commentary on Networking of Theories—An Approach for Exploiting the Diversity of Theoretical Approaches 507
Ferdinando Arzarello

References .. 512

Part XVI Issues and Practices in Networking Theories

Preface to Part XVI .. 515
Susanne Prediger and Angelika Bikner-Ahsbahs

References .. 517

On Networking Strategies and Theories’ Compatibility: Learning from an Effective Combination of Theories in a Research Project 519
Helga Jungwirth

Introduction ... 519
Theories ... 520
 Micro-sociological Frameworks 520
 Linguistic Activity Theory .. 521
Networking Strategies: Synthesizing and Co-ordinating 521
 Synthesizing and Co-ordinating: Two Sides of One Coin in
 Grounded Theory Development 522
Networking of Theories in My Case: An Illustrative Example 524
 A Networked Interpretation of the First Part of the Episode 525
 A Networked Interpretation of the Second Part of the Episode 526
 Going Beyond the Episode 527
Compatibility of Theories .. 528
Concordance of Theories’ Basic Assumptions (Paradigms) . . 529
Neighbourhood of Phenomena’s Sites 530
Theories’ Differences in Empirical Load 531
References .. 534

Modalities of a Local Integration of Theories in Mathematics Education . 537
Uwe Gellert
Theorizing as Bricolage ... 538
Explicitness in Mathematics Instruction: A Case of Local Theory
Integration ... 540
A Semiotic Interpretation .. 543
A Structuralist Interpretation .. 544
Local Integration of Semiotic and Structuralist Assumptions . 545
Theorizing as Mutual Metaphorical Structuring 546
Conclusion .. 548
References .. 549

Commentary on On Networking Strategies and Theories’ Compatibility:
Learning from an Effective Combination of Theories in a Research
Project .. 551
Uwe Gellert
References .. 554

Commentary on Modalities of a Local Integration of Theories in
Mathematics Education .. 555
Tine Wedege
Theoretical Approach Versus Theoretical Perspective 556
Implicitness in Instruction and in Research 557
From Bricoleur to Reflective Practitioner 558
References .. 559

Part XVII Complexity Theories and Theories of Learning: Literature
Reviews and Syntheses

Preface to Part XVII ... 563
Richard Lesh

Complexity Theories and Theories of Learning: Literature Reviews and
Syntheses ... 567
Andy Hurford
General Systems Approaches 567
An In-Depth View of Three Systems Perspectives 569
Future Research Directions ... 585
Conclusion .. 586
References .. 587
Part XVIII Knowing More Than We Can Tell

Preface to Part XVIII .. 593
 Bharath Sriraman

Knowing More Than We Can Tell 595
 Nathalie Sinclair
 Structuring Covert Ways of Knowing 596
 On Furtive Caresses .. 597
 On Passions and Pleasures 600
 On Desire and Delusion 603
 Looking Back, Looking Forward 609
 References .. 611

Commentary on Knowing More Than We Can Tell 613
 David Pimm
 What’s in a Word? .. 614
 The Tact of the Tactile 615
 Psychoanalytic Tremors 616
 Frontiers and Boundaries: Mathematical Intimations of Mortality 617
 References .. 618

Part XIX Politicizing Mathematics Education: Has Politics Gone too Far? Or Not Far Enough?

Politicizing Mathematics Education: Has Politics Gone too Far? Or Not Far Enough? 621
 Bharath Sriraman, Matt Roscoe, and Lyn English
 Overview ... 621
 Mathematics as a Marginalizing Force 623
 Democratization, Globalization and Ideologies 627
 Looking Back at New Math (and Its Consequences) as an Outcome of the Cold War 629
 Mathematics, Technology and Society 629
 What Does the Future Hold? A Critical View of the Field 633
 References .. 636

Commentary on Politicizing Mathematics Education: Has Politics Gone too Far? Or Not Far Enough? 639
 Keiko Yasukawa
 References .. 643

Author Index ... 645

Subject Index .. 661
Theories of Mathematics Education
Seeking New Frontiers
Sriraman, B.; English, L. (Eds.)
2010, XXX, 668 p. 34 illus., Hardcover
ISBN: 978-3-642-00741-5