Contents

Part I Surveying Theories and Philosophies of Mathematics Education

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to Part I</td>
<td>3</td>
</tr>
<tr>
<td>Jeremy Kilpatrick</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>5</td>
</tr>
</tbody>
</table>

Surveying Theories and Philosophies of Mathematics Education (Bharath Sriraman and Lyn English)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Remarks</td>
<td>7</td>
</tr>
<tr>
<td>Imre Lakatos and Various Forms of Constructivism</td>
<td>8</td>
</tr>
<tr>
<td>Theory Development</td>
<td>10</td>
</tr>
<tr>
<td>Theory and Its Role in Mathematics Education</td>
<td>12</td>
</tr>
<tr>
<td>Changes in Theoretical Paradigms</td>
<td>13</td>
</tr>
<tr>
<td>Are We Progressing?</td>
<td>15</td>
</tr>
<tr>
<td>Home-Grown Theories versus Interdisciplinary Views</td>
<td>16</td>
</tr>
<tr>
<td>European Schools of Thought in Mathematics Education</td>
<td>18</td>
</tr>
<tr>
<td>Didactique des Mathématiques—The French Tradition</td>
<td>19</td>
</tr>
<tr>
<td>The Royaumont Seminar</td>
<td>20</td>
</tr>
<tr>
<td>Impact of Theories on Practice</td>
<td>24</td>
</tr>
<tr>
<td>Closing Summary</td>
<td>25</td>
</tr>
<tr>
<td>References</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>38</td>
</tr>
</tbody>
</table>

Part II Reflections on Theories of Learning

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to Part II Ernest’s Reflections on Theories of Learning</td>
<td>35</td>
</tr>
<tr>
<td>Bharath Sriraman and Nick Haverhals</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>38</td>
</tr>
</tbody>
</table>

xiii
Contents

<table>
<thead>
<tr>
<th>Reflections on Theories of Learning</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Ernest</td>
<td>39</td>
</tr>
<tr>
<td>Construction</td>
<td>39</td>
</tr>
<tr>
<td>Radical Constructivism</td>
<td>41</td>
</tr>
<tr>
<td>Enactivism</td>
<td>42</td>
</tr>
<tr>
<td>Social Constructivism</td>
<td>43</td>
</tr>
<tr>
<td>Implications for Educational Practice</td>
<td>45</td>
</tr>
<tr>
<td>References</td>
<td>46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commentary 1 on Reflections on Theories of Learning by Paul Ernest</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simon Goodchild</td>
<td>52</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commentary 2 on Reflections on Theories of Learning</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Ernest</td>
<td>60</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part III On the Theoretical, Conceptual, and Philosophical Foundations for Research in Mathematics Education</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to Part III</td>
<td>65</td>
</tr>
<tr>
<td>Lyn D. English</td>
<td>66</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On the Theoretical, Conceptual, and Philosophical Foundations for Research in Mathematics Education</th>
<th>67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frank K. Lester Jr.</td>
<td>67</td>
</tr>
<tr>
<td>Establishing a Context</td>
<td>67</td>
</tr>
<tr>
<td>The Role of Theory</td>
<td>69</td>
</tr>
<tr>
<td>The Nature of Research Frameworks</td>
<td>69</td>
</tr>
<tr>
<td>Types of Frameworks</td>
<td>70</td>
</tr>
<tr>
<td>The Influence of One’s Philosophical Stance on the Nature of One’s Research</td>
<td>75</td>
</tr>
<tr>
<td>A System for Classifying Systems of Inquiry</td>
<td>76</td>
</tr>
<tr>
<td>The Goals of MER and the Place of Frameworks and Philosophy</td>
<td>81</td>
</tr>
<tr>
<td>References</td>
<td>83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commentary on On the Theoretical, Conceptual, and Philosophical Foundations for Research in Mathematics Education</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guershon Harel</td>
<td>87</td>
</tr>
<tr>
<td>Rigid Definition of Scientific Research in Education</td>
<td>87</td>
</tr>
<tr>
<td>The Role of Theory</td>
<td>88</td>
</tr>
<tr>
<td>The Role of Mathematical Context</td>
<td>90</td>
</tr>
<tr>
<td>References</td>
<td>93</td>
</tr>
</tbody>
</table>
Part IV Theories of Mathematics Education: Is Plurality a Problem?

Preface to Part IV ... 97
Norma Presmeg

Theories of Mathematics Education: Is Plurality a Problem? 99
Stephen Lerman
 Introduction .. 99
 A Language of Research Fields .. 100
 Hierarchical Discourses ... 100
 Vertical Knowledge Structures .. 101
 Theories in Use in Mathematics Education 103
 Discussion ... 106
 Conclusion ... 108
 References ... 109

Commentary on Theories of Mathematics Education: Is Plurality a
Problem? .. 111
Eva Jablonka and Christer Bergsten
 Expansion of the Knowledge .. 111
 Communication and ‘Translation’ Between Discourses 113
 The Social Turn or the Social Branch? 114
 A Plurality of Rival Discourses Within an ‘Approach-Paradigm’? 114
 Unbalanced Theory Reception ... 115
 Concluding Remark ... 116
 References ... 117

Part V Re-conceptualizing Mathematics Education as a Design Science

Preface to Part V ... 121
Lyn D. English
 References ... 122

Re-conceptualizing Mathematics Education as a Design Science 123
Richard Lesh and Bharath Sriraman
 A Brief History of Our Field .. 123
 What Is a Design Science? ... 124
 Observations about Mathematics Education as a Distinct Field of Scientific Inquiry ... 128
 Preliminary Implications for Mathematics Education 130
 Most of the Systems We Need to Understand Are Complex,
 Dynamic, and Continually Adapting 133
 What Kind of Explanations are Appropriate for Comparing Two Complex Systems? ... 137
Commentary 1 on Re-conceptualizing Mathematics Education as a Design Science
Miriam Amit

Commentary 2 on Re-conceptualizing Mathematics Education as a Design Science
Claus Michelsen

Commentary 3 on Re-conceptualizing Mathematics Education as a Design Science
David N. Boote

Analysis of Arguments Supporting Design Research
Over-stating the Benefits of Design Science
Neo-liberal Logic of Employment
Educating Design Scientists
Conclusions

Part VI The Fundamental Cycle of Concept Construction Underlying Various Theoretical Frameworks
Preface to Part VI
Stephen J. Hegedus

The Fundamental Cycle of Concept Construction Underlying Various Theoretical Frameworks
John Pegg and David Tall

Introduction
Local Cycles
Process-Object Encapsulation
Similar Cycles in Different Modes
SOLO and Local Cycles of Development
Developments in Global and Local Theory
Discussion
References
Commentary on The Fundamental Cycle of Concept Construction
Underlying Various Theoretical Frameworks 193
Bettina Dahl

Introduction .. 193
Fundamental Cycles of Concept Construction Underlying Various
Theoretical Frameworks ... 193
Another Framework of Cognitive Processes 196
Merging the Frameworks .. 197
Where Are We as a Field? .. 199
How Do We Move Forward? .. 200
Discontinuity and Lack of Progress 201
Is Complementarity the Solution? 201
Are We Shooting with a Shotgun Then? 202
Scientific Growth Through Falsifications 203
Unified Theory and Truth .. 204
Conclusions .. 205
References ... 206

Part VII Symbols and Mediation in Mathematics Education

Preface to Part VII ... 211
Stephen J. Hegedus

Symbols and Mediation in Mathematics Education 213
Luis Moreno-Armella and Bharath Sriraman

Introduction .. 213
Arithmetic: Ancient Counting Technologies 218
Mathematics from a Dynamic Viewpoint: The Future of
Mathematics Education ... 221
Computational and Cognitive Technologies 222
Domains of Abstractions .. 224
Induction and Deduction: The Computer as a Mediating Tool .. 227
Algorithms, Representations and Mathematical Thinking 228
Representation Fluidity in Dynamic Geometry 230
References ... 231

Commentary on Symbols and Mediation in Mathematics Education 233
Gerald A. Goldin

References ... 237
Part VIII Problem Solving Heuristics, Affect, and Discrete Mathematics: A Representational Discussion

Problem Solving Heuristics, Affect, and Discrete Mathematics: A Representational Discussion ... 241

Gerald A. Goldin

Possibilities for Discrete Mathematics ... 241
A Problem for Discussion ... 242
Developing Internal Systems of Representation for Mathematical Thinking and Problem Solving ... 245
A Heuristic Process: Modeling the General on the Particular 247
Affective Considerations ... 248
References ... 249

Commentary on Problem Solving Heuristics, Affect, and Discrete Mathematics: A Representational Discussion ... 251

Jinfa Cai

Discrete Mathematical Domain and Problem Solving 252
Instructional Objectives ... 253
Problem-Solving Heuristics .. 254
Teaching Mathematics Through Problem Solving: A Future Direction of Problem Solving Research ... 254
References ... 256

Part IX Problem Solving for the 21st Century

Preface to Part IX ... 261

Jinfa Cai

References ... 262

Problem Solving for the 21st Century .. 263

Lyn English and Bharath Sriraman

A Brief Reflection on Problem-Solving Research 263
Limiting Factors in Problem-Solving Research 266
Pendulum Swings Fuelled by High-Stakes Testing 266
Limited Research on Concept Development through Problem Solving .. 267
Limited Knowledge of Students’ Problem Solving Beyond the Classroom .. 268
Lack of Accumulation of Problem-Solving Research 268
Advancing the Fields of Problem-Solving Research and Curriculum Development ... 269
The Nature of Problem Solving in Today’s World 269
Contents

Future-Oriented Perspectives on the Teaching and Learning of Problem Solving 270
Mathematical Modelling .. 271
Modelling as an Advance on Existing Classroom Problem Solving .. 273
An Example of an Interdisciplinary Mathematical Modelling Problem .. 274
Cycles of Development Displayed by One Group of Children 276
Students’ Learning in Working The First Fleet Problem .. 278
Mathematical Modelling with Young Learners: A Focus on Statistical Reasoning 279
Concluding Points ... 282
Appendix: First Fleet Data Table 284
References ... 286

Commentary 1 on Problem Solving for the 21st Century ... 291
Peter Grootenboer
Introduction ... 291
Complexity ... 291
Mathematical Modelling ... 292
Future Directions ... 294
Concluding Comments .. 295
References ... 295

Commentary 2 on Problem Solving for the 21st Century ... 297
Alan Zollman
Forward to the Past? ... 300
References ... 301

Part X Embodied Minds and Dancing Brains: New Opportunities for Research in Mathematics Education

Preface to Part X .. 305
Layne Kalbfleisch
References ... 306

Embodied Minds and Dancing Brains: New Opportunities for Research in Mathematics Education .. 309
Stephen R. Campbell
Introduction ... 309
First: Why Bother? .. 311
Second: Some Preliminary Rationale 312
Third: Cognitive and Educational Neuroscience 314
Fourth: Embodied Cognition 316
Fifth: Toward Defining Mathematics Educational Neuroscience .. 319
Contents

Sixth: New Questions and New Tools 322
References ... 326

Commentary on Embodied Minds and Dancing Brains: New Opportunities for Research in Mathematics Education 333
Scott Makeig
References ... 337

Part XI DNR-Based Instruction in Mathematics as a Conceptual Framework

Preface to Part XI ... 341
Luis Moreno-Armella
References ... 342

DNR-Based Instruction in Mathematics as a Conceptual Framework 343
Guershon Harel
Research-Based Framework 344
DNR-Based Lesson .. 346
 Segment 0: The Problem 346
 Segment I: Students’ Initial Conclusion 347
 Segment II: Necessitating an Examination of the Initial Conclusion .. 347
 Segment III: The Examination and Its Outcomes 348
 Segment IV: Lesson(s) Learned 351
DNR Structure .. 352
 Premises .. 353
 Concepts .. 355
 Instructional Principles 357
Analysis of the Lesson 360
Final Comments .. 364
References ... 366

Commentary on DNR-Based Instruction in Mathematics as a Conceptual Framework ... 369
Bharath Sriraman, Hillary VanSpronsen, and Nick Haverhals
References ... 377

Part XII Appreciating Scientificity in Qualitative Research

Appreciating Scientificity in Qualitative Research 381
Stephen J. Hegedus
 The Process of Scientific Discovery 381
 The Generation of Truthful Conclusions 384
 Methodological Rigor—Is Truth Rigorous? 387
Contents

The Basis of Truth-Finding: What Is the Smorgasbord of Truth, i.e., Do We Have an Establishment of Processes Which Announces Our Universal Set of Truths? .. 388
The 3-fold Doctrine of Scientificity .. 388
Epistemology Identity ... 389
Reflexivity ... 389
The Dynamic ... 390
Conclusion .. 393
References ... 393

Part XIII Understanding a Teacher’s Actions in the Classroom by Applying Schoenfeld’s Theory Teaching-In-Context: Reflecting on Goals and Beliefs

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to Part XIII</td>
<td>397</td>
</tr>
<tr>
<td>Gerald A. Goldin</td>
<td>References</td>
</tr>
<tr>
<td>Understanding a Teacher’s Actions in the Classroom by Applying Schoenfeld’s Theory Teaching-In-Context: Reflecting on Goals and Beliefs</td>
<td>401</td>
</tr>
<tr>
<td>Günter Törner, Katrin Rolka, Bettina Rösken, and Bharath Sriraman</td>
<td>Introduction</td>
</tr>
<tr>
<td>Understanding a Teacher’s Action in Terms of Knowledge, Goals and Beliefs</td>
<td>403</td>
</tr>
<tr>
<td>Available Teacher Knowledge</td>
<td>403</td>
</tr>
<tr>
<td>Teacher Beliefs</td>
<td>404</td>
</tr>
<tr>
<td>Goals, Their Interdependencies with Beliefs, and Structural Features</td>
<td>405</td>
</tr>
<tr>
<td>Empirical Approach and Methodology</td>
<td>407</td>
</tr>
<tr>
<td>Data Sources</td>
<td>407</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>408</td>
</tr>
<tr>
<td>Results on Goals and Involved Beliefs</td>
<td>409</td>
</tr>
<tr>
<td>Formal Goals</td>
<td>409</td>
</tr>
<tr>
<td>Pedagogical Content Goals and Beliefs, and Their Networking</td>
<td>410</td>
</tr>
<tr>
<td>Subject Matter Goals and Beliefs and Their Internal Structure</td>
<td>415</td>
</tr>
<tr>
<td>Interpretative Remarks on the Goals and Beliefs Structure</td>
<td>416</td>
</tr>
<tr>
<td>Conclusions</td>
<td>417</td>
</tr>
<tr>
<td>References</td>
<td>417</td>
</tr>
</tbody>
</table>

Commentary on Understanding a Teacher’s Actions in the Classroom by Applying Schoenfeld’s Theory Teaching-In-Context: Reflecting on Goals and Beliefs .. 421
<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dina Tirosh and Pessia Tsamir</td>
<td>References</td>
</tr>
</tbody>
</table>
Part XIV Feminist Pedagogy and Mathematics

Preface to Part XIV .. 431
 Gabriele Kaiser
 References ... 433

Feminist Pedagogy and Mathematics 435
 Judith E. Jacobs
 Introduction ... 435
 Theoretical Framework: Different Voices 436
 Feminist Pedagogy: The Nature of the Mathematics 440
 Feminist Pedagogy: The Methodology of the Mathematics Classroom 443
 Conclusion ... 445
 References ... 445

Commentary 1 on Feminist Pedagogy and Mathematics 447
 Gilah C. Leder
 Different Faces of Feminism 448
 Feminism and Mathematics Education 449
 Feminist Pedagogy and Mathematics—a Brief Summary .. 450
 Concluding Comments 452
 References ... 453

Commentary 2 on Feminist Pedagogy and Mathematics 455
 Safure Bulut, Bekir S. Gür, and Bharath Sriraman
 Introduction: Revisiting the Gender Debate 455
 Feminist Pedagogy and Mathematics 456
 Education in Turkey .. 457
 Gender and Mathematics Achievement in Turkey 458
 Conclusion ... 464
 References ... 464

Commentary 3 on Feminist Pedagogy and Mathematics 467
 Guðbjörg Pálsdóttir and Bharath Sriraman
 In the Shadow of PISA 2003 in Iceland 467
 A Different Perspective on the Gender Issue 469
 References ... 474

Part XV Networking of Theories—An Approach for Exploiting the Diversity of Theoretical Approaches

Preface to Part XV .. 479
 Tommy Dreyfus
 References ... 481
Concordance of Theories’ Basic Assumptions (Paradigms) . . 529
Neighbourhood of Phenomena’s Sites 530
Theories’ Differences in Empirical Load 531
References ... 534

Modalities of a Local Integration of Theories in Mathematics Education . 537
Uwe Gellert
Theorizing as Bricolage .. 538
Explicitness in Mathematics Instruction: A Case of Local Theory
Integration .. 540
A Semiotic Interpretation 543
A Structuralist Interpretation 544
Local Integration of Semiotic and Structuralist Assumptions . 545
Theorizing as Mutual Metaphorical Structuring 546
Conclusion .. 548
References ... 549

Commentary on On Networking Strategies and Theories’ Compatibility: Learning from an Effective Combination of Theories in a Research Project 551
Uwe Gellert
References ... 554

Commentary on Modalities of a Local Integration of Theories in Mathematics Education . 555
Tine Wedege
Theoretical Approach Versus Theoretical Perspective 556
Implicitness in Instruction and in Research 557
From Bricoleur to Reflective Practitioner 558
References ... 559

Part XVII Complexity Theories and Theories of Learning: Literature Reviews and Syntheses

Preface to Part XVII . .. 563
Richard Lesh

Complexity Theories and Theories of Learning: Literature Reviews and Syntheses . 567
Andy Hurford
General Systems Approaches 567
An In-Depth View of Three Systems Perspectives 569
Future Research Directions 585
Conclusion ... 586
References ... 587
Part XVIII Knowing More Than We Can Tell

Preface to Part XVIII

Bharath Sriraman

Knowing More Than We Can Tell

Nathalie Sinclair

- Structuring Covert Ways of Knowing
- On Furtive Caresses
- On Passions and Pleasures
- On Desire and Delusion
- Looking Back, Looking Forward
- References

Commentary on Knowing More Than We Can Tell

David Pimm

- What’s in a Word?
- The Tact of the Tactile
- Psychoanalytic Tremors
- Frontiers and Boundaries: Mathematical Intimations of Mortality
- References

Part XIX Politicizing Mathematics Education: Has Politics Gone too Far? Or Not Far Enough?

Politicizing Mathematics Education: Has Politics Gone too Far? Or Not Far Enough?

Bharath Sriraman, Matt Roscoe, and Lyn English

- Overview
- Mathematics as a Marginalizing Force
- Democratization, Globalization and Ideologies
- Looking Back at New Math (and Its Consequences) as an Outcome of the Cold War
- Mathematics, Technology and Society
- What Does the Future Hold? A Critical View of the Field
- References

Commentary on Politicizing Mathematics Education: Has Politics Gone too Far? Or Not Far Enough?

Keiko Yasukawa

- References

Author Index

-

Subject Index

-

Contents

Part XVIII Knowing More Than We Can Tell

Preface to Part XVIII ... 593
Bharath Sriraman

Knowing More Than We Can Tell 595
Nathalie Sinclair

- Structuring Covert Ways of Knowing
- On Furtive Caresses
- On Passions and Pleasures
- On Desire and Delusion
- Looking Back, Looking Forward
- References

Commentary on Knowing More Than We Can Tell 613
David Pimm

- What’s in a Word?
- The Tact of the Tactile
- Psychoanalytic Tremors
- Frontiers and Boundaries: Mathematical Intimations of Mortality
- References

Part XIX Politicizing Mathematics Education: Has Politics Gone too Far? Or Not Far Enough?

Politicizing Mathematics Education: Has Politics Gone too Far? Or Not Far Enough? ... 621
Bharath Sriraman, Matt Roscoe, and Lyn English

- Overview
- Mathematics as a Marginalizing Force
- Democratization, Globalization and Ideologies
- Looking Back at New Math (and Its Consequences) as an Outcome of the Cold War
- Mathematics, Technology and Society
- What Does the Future Hold? A Critical View of the Field
- References

Commentary on Politicizing Mathematics Education: Has Politics Gone too Far? Or Not Far Enough? 639
Keiko Yasukawa

- References

Author Index ... 645

Subject Index ... 661
Theories of Mathematics Education
Seeking New Frontiers
Sriraman, B.; English, L. (Eds.)
2010, XXX, 668 p. 34 illus., Hardcover
ISBN: 978-3-642-00741-5