Contents

Part I Surveying Theories and Philosophies of Mathematics Education

Preface to Part I .. 3
Jeremy Kilpatrick
References .. 5

Surveying Theories and Philosophies of Mathematics Education 7
Bharath Sriraman and Lyn English
Preliminary Remarks ... 7
Imre Lakatos and Various Forms of Constructivism 8
Theory Development ... 10
Theory and Its Role in Mathematics Education 12
Changes in Theoretical Paradigms 13
Are We Progressing? .. 15
Home-Grown Theories versus Interdisciplinary Views 16
European Schools of Thought in Mathematics Education 18
 Didactique des Mathématiques—The French Tradition 19
 The Royaumont Seminar ... 20
Impact of Theories on Practice 24
Closing Summary .. 25
References .. 27

Part II Reflections on Theories of Learning

Preface to Part II Ernest’s Reflections on Theories of Learning 35
Bharath Sriraman and Nick Haverhals
References .. 38
Reflections on Theories of Learning 39
Paul Ernest
Construction ... 39
Radical Constructivism 41
Enactivism ... 42
Social Constructivism 43
Implications for Educational Practice 45
References .. 46

Commentary 1 on Reflections on Theories of Learning by Paul Ernest .. 49
Simon Goodchild
References .. 52

Commentary 2 on Reflections on Theories of Learning 53
Paul Ernest
References .. 60

Part III On the Theoretical, Conceptual, and Philosophical Foundations for
Research in Mathematics Education

Preface to Part III 65
Lyn D. English
References .. 66

On the Theoretical, Conceptual, and Philosophical Foundations for
Research in Mathematics Education 67
Frank K. Lester Jr.
Establishing a Context 67
The Role of Theory 69
 The Nature of Research Frameworks 69
 Types of Frameworks 70
The Influence of One’s Philosophical Stance on the Nature of
One’s Research .. 75
A System for Classifying Systems of Inquiry 76
The Goals of MER and the Place of Frameworks and Philosophy . 81
References .. 83

Commentary on On the Theoretical, Conceptual, and Philosophical
Foundations for Research in Mathematics Education 87
Guershon Harel
Rigid Definition of Scientific Research in Education 87
The Role of Theory 88
The Role of Mathematical Context 90
References .. 93
Part IV Theories of Mathematics Education: Is Plurality a Problem?

Preface to Part IV ... 97
Norma Presmeg

Theories of Mathematics Education: Is Plurality a Problem? 99
Stephen Lerman
- **Introduction** ... 99
- **A Language of Research Fields** 100
 - Hierarchical Discourses 100
 - Vertical Knowledge Structures 101
- **Theories in Use in Mathematics Education** 103
- **Discussion** ... 106
- **Conclusion** ... 108
- **References** ... 109

Commentary on Theories of Mathematics Education: Is Plurality a Problem? ... 111
Eva Jablonka and Christer Bergsten
- **Expansion of the Knowledge** 111
- **Communication and ‘Translation’ Between Discourses** 113
- **The Social Turn or the Social Branch?** 114
- **A Plurality of Rival Discourses Within an ‘Approach-Paradigm’?** 114
- **Unbalanced Theory Reception** 115
- **Concluding Remark** 116
- **References** ... 117

Part V Re-conceptualizing Mathematics Education as a Design Science

Preface to Part V ... 121
Lyn D. English
- **References** ... 122

Re-conceptualizing Mathematics Education as a Design Science 123
Richard Lesh and Bharath Sriraman
- **A Brief History of Our Field** 123
- **What Is a Design Science?** 124
- **Observations about Mathematics Education as a Distinct Field of Scientific Inquiry** 128
- **Preliminary Implications for Mathematics Education** 130
- **Most of the Systems We Need to Understand Are Complex, Dynamic, and Continually Adapting** 133
- **What Kind of Explanations are Appropriate for Comparing Two Complex Systems?** 137
Lack of Cumulativeness is Our Foremost Problem 139
Summary—Comparing Ideologies, Theories and Models 142
Concluding Points ... 143
References ... 145

Commentary 1 on Re-conceptualizing Mathematics Education as a Design Science 147
Miriam Amit
References ... 149

Commentary 2 on Re-conceptualizing Mathematics Education as a Design Science 151
Claus Michelsen
References ... 156

Commentary 3 on Re-conceptualizing Mathematics Education as a Design Science 159
David N. Boote
Analysis of Arguments Supporting Design Research 159
Over-stating the Benefits of Design Science 161
Neo-liberal Logic of Employment 162
Educating Design Scientists 164
Conclusions ... 166
References ... 167

Part VI The Fundamental Cycle of Concept Construction Underlying Various Theoretical Frameworks

Preface to Part VI .. 171
Stephen J. Hegedus

The Fundamental Cycle of Concept Construction Underlying Various Theoretical Frameworks 173
John Pegg and David Tall
Introduction ... 173
Local Cycles ... 176
Process-Object Encapsulation 179
Similar Cycles in Different Modes 182
SOLO and Local Cycles of Development 184
Developments in Global and Local Theory 187
Discussion ... 189
References ... 191
Commentary on The Fundamental Cycle of Concept Construction

Underlying Various Theoretical Frameworks 193
Bettina Dahl

Introduction .. 193
Fundamental Cycles of Concept Construction Underlying Various Theoretical Frameworks .. 193
Another Framework of Cognitive Processes 196
Merging the Frameworks .. 197
Where Are We as a Field? ... 199
How Do We Move Forward? .. 200
Discontinuity and Lack of Progress 201
Is Complementarity the Solution? 201
Are We Shooting with a Shotgun Then? 202
Scientific Growth Through Falsifications 203
Unified Theory and Truth .. 204
Conclusions ... 205
References ... 206

Part VII Symbols and Mediation in Mathematics Education

Preface to Part VII ... 211
Stephen J. Hegedus

Symbols and Mediation in Mathematics Education 213
Luis Moreno-Armella and Bharath Sriraman

Introduction ... 213
Arithmetic: Ancient Counting Technologies 218
Mathematics from a Dynamic Viewpoint: The Future of
 Mathematics Education .. 221
 Computational and Cognitive Technologies 222
 Domains of Abstractions ... 224
 Induction and Deduction: The Computer as a Mediating Tool 227
 Algorithms, Representations and Mathematical Thinking ... 228
 Representational Fluidity in Dynamic Geometry 230
 References ... 231

Commentary on Symbols and Mediation in Mathematics Education 233
Gerald A. Goldin

References .. 237
Part VIII Problem Solving Heuristics, Affect, and Discrete Mathematics: A Representational Discussion

Problem Solving Heuristics, Affect, and Discrete Mathematics: A Representational Discussion 241
Gerald A. Goldin
Possibilities for Discrete Mathematics ... 241
A Problem for Discussion ... 242
Developing Internal Systems of Representation for Mathematical Thinking and Problem Solving ... 245
A Heuristic Process: Modeling the General on the Particular 247
Affective Considerations ... 248
References .. 249

Commentary on Problem Solving Heuristics, Affect, and Discrete Mathematics: A Representational Discussion 251
Jinfa Cai
Discrete Mathematical Domain and Problem Solving 252
Instructional Objectives ... 253
Problem-Solving Heuristics .. 254
Teaching Mathematics Through Problem Solving: A Future Direction of Problem Solving Research ... 254
References .. 256

Part IX Problem Solving for the 21st Century

Preface to Part IX ... 261
Jinfa Cai
References .. 262

Problem Solving for the 21st Century .. 263
Lyn English and Bharath Sriraman
A Brief Reflection on Problem-Solving Research .. 263
Limiting Factors in Problem-Solving Research .. 266
Pendulum Swings Fuelled by High-Stakes Testing 266
Limited Research on Concept Development through Problem Solving ... 267
Limited Knowledge of Students’ Problem Solving Beyond the Classroom ... 268
Lack of Accumulation of Problem-Solving Research 268
Advancing the Fields of Problem-Solving Research and Curriculum Development ... 269
The Nature of Problem Solving in Today’s World 269
Future-Oriented Perspectives on the Teaching and Learning of Problem Solving 270
Mathematical Modelling ... 271
Modelling as an Advance on Existing Classroom Problem Solving ... 273
An Example of an Interdisciplinary Mathematical Modelling Problem ... 274
Cycles of Development Displayed by One Group of Children ... 276
Students’ Learning in Working The First Fleet Problem ... 278
Mathematical Modelling with Young Learners: A Focus on Statistical Reasoning 279
Concluding Points ... 282
Appendix: First Fleet Data Table 284
References ... 286

Commentary 1 on Problem Solving for the 21st Century ... 291
Peter Grootenboer
Introduction ... 291
Complexity ... 291
Mathematical Modelling ... 292
Future Directions ... 294
Concluding Comments ... 295
References ... 295

Commentary 2 on Problem Solving for the 21st Century ... 297
Alan Zollman
Forward to the Past? ... 300
References ... 301

Part X Embodied Minds and Dancing Brains: New Opportunities for Research in Mathematics Education

Preface to Part X ... 305
Layne Kalbfleish
References ... 306

Embodied Minds and Dancing Brains: New Opportunities for Research in Mathematics Education ... 309
Stephen R. Campbell
Introduction ... 309
First: Why Bother? ... 311
Second: Some Preliminary Rationale ... 312
Third: Cognitive and Educational Neuroscience ... 314
Fourth: Embodied Cognition ... 316
Fifth: Toward Defining Mathematics Educational Neuroscience ... 319
Sixth: New Questions and New Tools 322
References ... 326

Commentary on Embodied Minds and Dancing Brains: New
Opportunities for Research in Mathematics Education 333
Scott Makeig
References ... 337

Part XI DNR-Based Instruction in Mathematics as a Conceptual Framework

Preface to Part XI ... 341
Luis Moreno-Armella
References ... 342

DNR-Based Instruction in Mathematics as a Conceptual Framework . 343
Guershon Harel
Research-Based Framework ... 344
DNR-Based Lesson ... 346
Segment 0: The Problem .. 346
Segment I: Students’ Initial Conclusion 347
Segment II: Necessitating an Examination of the Initial
Conclusion ... 347
Segment III: The Examination and Its Outcomes 348
Segment IV: Lesson(s) Learned .. 351
DNR Structure ... 352
Premises ... 353
Concepts .. 355
Instructional Principles ... 357
Analysis of the Lesson ... 360
Final Comments ... 364
References ... 366

Commentary on DNR-Based Instruction in Mathematics as a
Conceptual Framework .. 369
Bharath Sriraman, Hillary VanSpronsen, and Nick Haverhals
References ... 377

Part XII Appreciating Scientificity in Qualitative Research

Appreciating Scientificity in Qualitative Research 381
Stephen J. Hegedus
The Process of Scientific Discovery .. 381
The Generation of Truthful Conclusions 384
Methodological Rigor—Is Truth Rigorous? 387
The Basis of Truth-Finding: What Is the Smorgasbord of Truth, i.e., Do We Have an Establishment of Processes Which Announces Our Universal Set of Truths? ... 388

The 3-fold Doctrine of Scientificity ... 388

Epistemology Identity .. 389

Reflexivity .. 389

The Dynamic ... 390

Conclusion ... 393

References ... 393

Part XIII Understanding a Teacher’s Actions in the Classroom by Applying Schoenfeld’s Theory Teaching-In-Context: Reflecting on Goals and Beliefs

Preface to Part XIII .. 397

Gerald A. Goldin

References ... 398

Understanding a Teacher’s Actions in the Classroom by Applying Schoenfeld’s Theory Teaching-In-Context: Reflecting on Goals and Beliefs ... 401

Günter Törner, Katrin Rolka, Bettina Rösken, and Bharath Sriraman

Introduction ... 401

Understanding a Teacher’s Action in Terms of Knowledge, Goals and Beliefs ... 403

Available Teacher Knowledge ... 403

Teacher Beliefs ... 404

Goals, Their Interdependencies with Beliefs, and Structural Features 405

Empirical Approach and Methodology .. 407

Data Sources ... 407

Data Analysis ... 408

Results on Goals and Involved Beliefs .. 409

Formal Goals .. 409

Pedagogical Content Goals and Beliefs, and Their Networking 410

Subject Matter Goals and Beliefs and Their Internal Structure 415

Interpretative Remarks on the Goals and Beliefs Structure 416

Conclusions ... 417

References ... 417

Commentary on Understanding a Teacher’s Actions in the Classroom by Applying Schoenfeld’s Theory Teaching-In-Context: Reflecting on Goals and Beliefs ... 421

Dina Tirosh and Pessia Tsamir

References ... 426
Part XIV Feminist Pedagogy and Mathematics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to Part XIV</td>
<td>431</td>
</tr>
<tr>
<td>Gabriele Kaiser</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>433</td>
</tr>
<tr>
<td>Feminist Pedagogy and Mathematics</td>
<td>435</td>
</tr>
<tr>
<td>Judith E. Jacobs</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>435</td>
</tr>
<tr>
<td>Theoretical Framework: Different Voices</td>
<td>436</td>
</tr>
<tr>
<td>Feminist Pedagogy: The Nature of the Mathematics</td>
<td>440</td>
</tr>
<tr>
<td>Feminist Pedagogy: The Methodology of the Mathematics Classroom</td>
<td>443</td>
</tr>
<tr>
<td>Conclusion</td>
<td>445</td>
</tr>
<tr>
<td>References</td>
<td>445</td>
</tr>
<tr>
<td>Commentary 1 on Feminist Pedagogy and Mathematics</td>
<td>447</td>
</tr>
<tr>
<td>Gilah C. Leder</td>
<td></td>
</tr>
<tr>
<td>Different Faces of Feminism</td>
<td>448</td>
</tr>
<tr>
<td>Feminism and Mathematics Education</td>
<td>449</td>
</tr>
<tr>
<td>Feminist Pedagogy and Mathematics—a Brief Summary</td>
<td>450</td>
</tr>
<tr>
<td>Concluding Comments</td>
<td>452</td>
</tr>
<tr>
<td>References</td>
<td>453</td>
</tr>
<tr>
<td>Commentary 2 on Feminist Pedagogy and Mathematics</td>
<td>455</td>
</tr>
<tr>
<td>Safure Bulut, Bekir S. Gür, and Bharath Sriraman</td>
<td></td>
</tr>
<tr>
<td>Introduction: Revisiting the Gender Debate</td>
<td>455</td>
</tr>
<tr>
<td>Feminist Pedagogy and Mathematics</td>
<td>456</td>
</tr>
<tr>
<td>Education in Turkey</td>
<td>457</td>
</tr>
<tr>
<td>Gender and Mathematics Achievement in Turkey</td>
<td>458</td>
</tr>
<tr>
<td>Conclusion</td>
<td>464</td>
</tr>
<tr>
<td>References</td>
<td>464</td>
</tr>
<tr>
<td>Commentary 3 on Feminist Pedagogy and Mathematics</td>
<td>467</td>
</tr>
<tr>
<td>Guðbjörg Pálsdóttir and Bharath Sriraman</td>
<td></td>
</tr>
<tr>
<td>In the Shadow of PISA 2003 in Iceland</td>
<td>467</td>
</tr>
<tr>
<td>A Different Perspective on the Gender Issue</td>
<td>469</td>
</tr>
<tr>
<td>References</td>
<td>474</td>
</tr>
</tbody>
</table>

Part XV Networking of Theories—An Approach for Exploiting the Diversity of Theoretical Approaches

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to Part XV</td>
<td>479</td>
</tr>
<tr>
<td>Tommy Dreyfus</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>481</td>
</tr>
</tbody>
</table>
Networking of Theories—An Approach for Exploiting the Diversity of Theoretical Approaches

Author: Angelika Bikner-Ahsbahs and Susanne Prediger

- **What Are Theories, and for What Are They Needed?**
 - 484
- **Static and Dynamic Views on Theories**
 - 485
- **Function of Theories for Research Practices**
 - 486
- **Diversity as a Challenge, a Resource, and a Starting Point for Further Development**
 - 489
- **Strategies for Connecting Theories—Describing a Landscape**
 - 491
- **Introducing the Terms**
 - 491
- **Understanding Others and Making own Theories Understandable**
 - 492
- **Comparing and Contrasting**
 - 493
- **Coordinating and Combining**
 - 495
- **Synthesizing and Integrating**
 - 496
- **Strategies and Methods for Networking**
 - 497
- **Developing Theories by Networking**
 - 500
- **References**
 - 503

Commentary on Networking of Theories—An Approach for Exploiting the Diversity of Theoretical Approaches

Author: Ferdinando Arzarello

- **References**
 - 512

Part XVI Issues and Practices in Networking Theories

Preface to Part XVI

Author: Susanne Prediger and Angelika Bikner-Ahsbahs

- **References**
 - 517

On Networking Strategies and Theories’ Compatibility: Learning from an Effective Combination of Theories in a Research Project

Author: Helga Jungwirth

- **Introduction**
 - 519
- **Theories**
 - 520
 - **Micro-sociological Frameworks**
 - 520
 - **Linguistic Activity Theory**
 - 521
- **Networking Strategies: Synthesizing and Co-ordinating**
 - 521
 - **Synthesizing and Co-ordinating: Two Sides of One Coin in Grounded Theory Development**
 - 522
- **Networking of Theories in My Case: An Illustrative Example**
 - 524
 - **A Networked Interpretation of the First Part of the Episode**
 - 525
 - **A Networked Interpretation of the Second Part of the Episode**
 - 526
 - **Going Beyond the Episode**
 - 527
 - **Compatibility of Theories**
 - 528
Concordance of Theories’ Basic Assumptions (Paradigms) . . 529
Neighbourhood of Phenomena’s Sites 530
Theories’ Differences in Empirical Load 531
References .. 534

Modalities of a Local Integration of Theories in Mathematics Education . 537
Uwe Gellert
Theorizing as Bricolage ... 538
Explicitness in Mathematics Instruction: A Case of Local Theory
Integration .. 540
A Semiotic Interpretation .. 543
A Structuralist Interpretation ... 544
Local Integration of Semiotic and Structuralist Assumptions . 545
Theorizing as Mutual Metaphorical Structuring 546
Conclusion .. 548
References .. 549

Commentary on On Networking Strategies and Theories’ Compatibility:
Learning from an Effective Combination of Theories in a Research
Project ... 551
Uwe Gellert
References .. 554

Commentary on Modalities of a Local Integration of Theories in
Mathematics Education .. 555
Tine Wedege
Theoretical Approach Versus Theoretical Perspective 556
Implicitness in Instruction and in Research 557
From Bricoleur to Reflective Practitioner 558
References .. 559

Part XVII Complexity Theories and Theories of Learning: Literature
Reviews and Syntheses

Preface to Part XVII ... 563
Richard Lesh

Complexity Theories and Theories of Learning: Literature Reviews and
Syntheses .. 567
Andy Hurford
General Systems Approaches .. 567
An In-Depth View of Three Systems Perspectives 569
Future Research Directions .. 585
Conclusion .. 586
References .. 587
Part XVIII Knowing More Than We Can Tell

Preface to Part XVIII ... 593
 Bharath Sriraman

Knowing More Than We Can Tell 595
 Nathalie Sinclair
 Structuring Covert Ways of Knowing 596
 On Furtive Caresses ... 597
 On Passions and Pleasures 600
 On Desire and Delusion 603
 Looking Back, Looking Forward 609
 References .. 611

Commentary on Knowing More Than We Can Tell 613
 David Pimm
 What’s in a Word? ... 614
 The Tact of the Tactile 615
 Psychoanalytic Tremors 616
 Frontiers and Boundaries: Mathematical Intimations of Mortality 617
 References .. 618

Part XIX Politicizing Mathematics Education: Has Politics Gone too Far? Or Not Far Enough?

Politicizing Mathematics Education: Has Politics Gone too Far? Or Not Far Enough? 621
 Bharath Sriraman, Matt Roscoe, and Lyn English
 Overview .. 621
 Mathematics as a Marginalizing Force 623
 Democratization, Globalization and Ideologies 627
 Looking Back at New Math (and Its Consequences) as an Outcome of the Cold War 629
 Mathematics, Technology and Society 629
 What Does the Future Hold? A Critical View of the Field 633
 References .. 636

Commentary on Politicizing Mathematics Education: Has Politics Gone too Far? Or Not Far Enough? 639
 Keiko Yasukawa
 References .. 643

Author Index .. 645

Subject Index ... 661
Theories of Mathematics Education
Seeking New Frontiers
Sriraman, B.; English, L. (Eds.)
2010, XXX, 668 p. 34 illus., Hardcover
ISBN: 978-3-642-00741-5