Contents

1 General Characteristic of Rotating-Disk Systems ... 1
 1.1 Industrial Applications of Rotating-Disk Systems 1
 1.2 Acting Forces .. 2
 1.3 Differential Equations of Continuity, Momentum and Heat Transfer 4
 1.4 Differential Equation of Convective Diffusion 9

2 Modelling of Fluid Flow and Heat Transfer in Rotating-Disk Systems 11
 2.1 Differential and Integral Equations ... 11
 2.1.1 Differential Navier–Stokes and Energy Equations 11
 2.1.2 Differential Boundary Layer Equations 13
 2.1.3 Integral Boundary Layer Equations .. 14
 2.2 Differential Methods of Solution .. 15
 2.2.1 Self-Similar Solution .. 15
 2.2.2 Approximate Analytical Methods for Laminar Flow Based
 on Approximations of Velocity Profiles 17
 2.2.3 Numerical Methods .. 17
 2.3 Integral Methods of Solution .. 18
 2.3.1 Momentum Boundary Layer .. 18
 2.3.2 Thermal Boundary Layer ... 22
 2.4 Integral Method for Modelling Fluid Flow and Heat Transfer in
 Rotating-Disk Systems .. 23
 2.4.1 Structure of the Method .. 23
 2.4.2 Turbulent Flow: Improved Approximations of the Velocity
 and Temperature Profiles ... 24
 2.4.3 Models of Surface Friction and Heat Transfer 25
 2.4.4 Integral Equations with Account for the Models
 for the Velocity and Temperature Profiles 27
 2.5 General Solution for the Cases of Disk Rotation in a Fluid Rotating
 as a Solid Body and Simultaneous Accelerating Imposed Radial Flow 29

3 Free Rotating Disk .. 33
 3.1 Laminar Flow ... 33
 3.2 Transition to Turbulent Flow and Effect of Surface Roughness 37
3.3 Turbulent Flow .. 41
 3.3.1 Parameters of the Turbulent Boundary Layer 41
 3.3.2 Surface Heat Transfer: Experimental and Theoretical Data
 of Different Authors ... 45
 3.3.3 Effect of Approximation of the Radial Velocity Profile on
 Parameters of Momentum and Thermal
 Boundary Layers .. 48
 3.3.4 Numerical Computation of Turbulent Flow and Heat
 Transfer for an Arbitrary Distribution of the Wall
 Temperature ... 54
3.4 Generalized Analytical Solution for Laminar and Turbulent
 Regimes Based on the Novel Model for the Enthalpy Thickness ... 58
3.5 Inverse Problem of Restoration of the Wall Temperature
 Distribution at a Specified Arbitrary Power Law for the Nusselt
 Number .. 61
 3.5.1 Solution of the Problem 61
 3.5.2 Limiting Case of the Solution 64
 3.5.3 Properties of the Solution for Temperature Head 65
 3.5.4 Analysis of the Solution 66
3.6 Theory of Local Modelling ... 72
 3.6.1 Solution of the Problem 72
 3.6.2 Other Interpretations .. 74

4 Unsteady Laminar Heat Transfer of a Free Rotating Disk 77
 4.1 Transient Experimental Technique for Measuring Heat Transfer
 over Rotating Disks ... 77
 4.2 Self-Similar Navier–Stokes and Energy Equations 79
 4.3 Exact Solution for Surface Heat Transfer of an Isothermal Rotating
 Disk .. 82
 4.4 Numerical Solution of an Unsteady Conjugate Problem
 of Hydrodynamics and Heat Transfer of an Initially Isothermal Disk
 85
 4.4.1 Computational Domain and Grid 85
 4.4.2 Validation for Steady-State Fluid Flow and Heat Transfer ... 86
 4.4.3 Unsteady Fluid Flow and Heat Transfer 88
 4.5 Unsteady Conjugate Laminar Heat Transfer of a Rotating
 Non-uniformly Heated Disk 91
 4.5.1 Problem Statement .. 91
 4.5.2 Self-Similar Solution of the Transient Laminar Convective
 Heat Transfer Problem .. 92
 4.5.3 Solution of the Unsteady Two-Dimensional Problem of
 Heat Conduction in a Disk 93
 4.5.4 Analysis of the Solutions for Unsteady Heat Conduction
 in a Disk ... 94
5 External Flow Imposed over a Rotating Disk .. 101
 5.1 Rotation of a Disk in a Fluid Rotating as a Solid Body Without
 Imposed Radial Flow .. 101
 5.1.1 Turbulent Flow .. 101
 5.1.2 Laminar Flow .. 106
 5.2 Accelerating Radial Flow Without Imposed External Rotation 118
 5.2.1 Flow Impingement onto an Orthogonal Rotating Disk:
 Experimental and Computational Data of Different Authors 118
 5.2.2 Turbulent Flow .. 123
 5.2.3 Laminar Flow .. 125
 5.3 Non-symmetric Flow over a Parallel Rotating Disk 143

6 Outward Underswirled and Overswirled Radial Flow Between
 Parallel Co-rotating Disks ... 147
 6.1 Flow in the Ekman Layers .. 147
 6.2 Radial Outflow Between Parallel Co-rotating Disks 148
 6.2.1 Flow Structure, Experiments and Computations of
 Different Authors .. 148
 6.2.2 Computation of the Radial Variation of the Swirl Parameter
 Using the Integral Method .. 152
 6.2.3 Local Nusselt Numbers .. 157
 6.2.4 Effect of the Radial Distribution of the Disk Surface
 Temperature .. 161
 6.3 Effect of the Flow Overswirl .. 164
 6.4 Aerodynamics and Heat Transfer in a Rotating-Disk Air Cleaner 168
 6.4.1 General Characteristics of the Problem 168
 6.4.2 Geometrical and Regime Parameters of the Air Cleaner 169
 6.4.3 Parameters of the Computational Scheme 171
 6.4.4 Results of Simulations .. 171

7 Laminar Fluid Flow and Heat Transfer in a Gap Between a Disk and
 a Cone that Touches the Disk with Its Apex .. 179
 7.1 General Characterization of the Problem ... 179
 7.2 Navier–Stokes and Energy Equations in the Self-similar Form 181
 7.3 Rotating Disk and/or Cone ... 184
 7.3.1 Numerical Values of Parameters in the Computations 184
 7.3.2 Cone Rotation at a Stationary Disk 185
 7.3.3 Disk Rotation at a Stationary Cone 187
 7.3.4 Co-rotating Disk and Cone ... 188
 7.3.5 Counter-Rotating Disk and Cone 188
 7.4 Radially Outward Swirling Flow in a Stationary Conical Diffuser 189

8 Heat and Mass Transfer of a Free Rotating Disk for the Prandtl and
 Schmidt Numbers Larger than Unity ... 193
 8.1 Laminar Flow .. 193
8.2 Transitional and Turbulent Flows for the Prandtl or Schmidt Numbers Moderately Different from Unity 201
8.3 Transitional and Turbulent Flows at High Prandtl and Schmidt Numbers ... 208
8.4 An Integral Method for Modelling Heat and Mass Transfer in Turbulent Flow for the Prandtl and Schmidt Numbers Larger than Unity .. 214
 8.4.1 Prandtl and Schmidt Numbers Moderately Different from Unity ... 214
 8.4.2 High Prandtl and Schmidt Numbers 217

References .. 225

Index ... 235
Convective Heat and Mass Transfer in Rotating Disk Systems
Shevchuk, I.V.
2009, XIX, 236 p. 116 illus., Hardcover
ISBN: 978-3-642-00717-0