## Contents

### 1. Introduction

1.1 A Survey of Semiconductors ........................................ 2
1.1.1 Elemental Semiconductors ..................................... 2
1.1.2 Binary Compounds ............................................. 2
1.1.3 Oxides ......................................................... 3
1.1.4 Layered Semiconductors ...................................... 3
1.1.5 Organic Semiconductors ...................................... 4
1.1.6 Magnetic Semiconductors .................................... 4
1.1.7 Other Miscellaneous Semiconductors ......................... 4
1.2 Growth Techniques ................................................ 5
1.2.1 Czochralski Method ............................................ 5
1.2.2 Bridgman Method .............................................. 6
1.2.3 Chemical Vapor Deposition ................................... 7
1.2.4 Molecular Beam Epitaxy ..................................... 8
1.2.5 Fabrication of Self-Organized Quantum Dots
   by the Stranski–Krastanow Growth Method ..................... 11
1.2.6 Liquid Phase Epitaxy ....................................... 13

Summary .......................................................................... 14
Periodic Table of “Semiconductor-Forming” Elements ............ 15

### 2. Electronic Band Structures

2.1 Quantum Mechanics .................................................. 18
2.2 Translational Symmetry and Brillouin Zones ..................... 20
2.3 A Pedestrian’s Guide to Group Theory ............................. 25
2.3.1 Definitions and Notations ..................................... 25
2.3.2 Symmetry Operations of the Diamond
   and Zinc-Blende Structures ........................................ 30
2.3.3 Representations and Character Tables ....................... 32
2.3.4 Some Applications of Character Tables ...................... 40
2.4 Empty Lattice or Nearly Free Electron Energy Bands ......... 48
2.4.1 Nearly Free Electron Band Structure
   in a Zinc-Blende Crystal ......................................... 48
2.4.2 Nearly Free Electron Energy Bands in Diamond Crystals 52
2.5 Band Structure Calculations by Pseudopotential Methods .... 58
2.5.1 Pseudopotential Form Factors
   in Zinc-Blende- and Diamond-Type Semiconductors .......... 61
2.5.2 Empirical and Self-Consistent Pseudopotential Methods 66
2.6 The \( k \cdot p \) Method of Band-Structure Calculations 68
2.6.1 Effective Mass of a Nondegenerate Band Using the \( k \cdot p \) Method 69
2.6.2 Band Dispersion near a Degenerate Extremum: Top Valence Bands in Diamond- and Zinc-Blende-Type Semiconductors 71
2.7 Tight-Binding or LCAO Approach to the Band Structure of Semiconductors 83
2.7.1 Molecular Orbitals and Overlap Parameters 83
2.7.2 Band Structure of Group-IV Elements by the Tight-Binding Method 87
2.7.3 Overlap Parameters and Nearest-Neighbor Distances 94
Problems 96
Summary 105

3.1 Phonon Dispersion Curves of Semiconductors 110
3.2 Models for Calculating Phonon Dispersion Curves of Semiconductors 114
3.2.1 Force Constant Models 114
3.2.2 Shell Model 114
3.2.3 Bond Models 115
3.2.4 Bond Charge Models 117
3.3 Electron–Phonon Interactions 121
3.3.1 Strain Tensor and Deformation Potentials 122
3.3.2 Electron–Acoustic-Phonon Interaction at Degenerate Bands 127
3.3.3 Piezoelectric Electron–Acoustic-Phonon Interaction 130
3.3.4 Electron–Optical-Phonon Deformation Potential Interactions 131
3.3.5 Fröhlich Interaction 133
3.3.6 Interaction Between Electrons and Large-Wavevector Phonons: Intervally Electron–Phonon Interaction 135
Problems 137
Summary 158

4. Electronic Properties of Defects 159
4.1 Classification of Defects 160
4.2 Shallow or Hydrogenic Impurities 161
4.2.1 Effective Mass Approximation 162
4.2.2 Hydrogenic or Shallow Donors 166
4.2.3 Donors Associated with Anisotropic Conduction Bands 171
4.2.4 Acceptor Levels in Diamond- and Zinc-Blende-Type Semiconductors 174
4.3 Deep Centers 180
### 4.3.1 Green’s Function Method
- for Calculating Defect Energy Levels .............. 183

### 4.3.2 An Application of the Green’s Function Method:
- Linear Combination of Atomic Orbitals .......... 188

### 4.3.3 Another Application of the Green’s Function Method:
- Nitrogen in GaP and GaAsP Alloys ............... 192

### 4.3.4 Final Note on Deep Centers .................. 197

**Problems** ............................................. 198
**Summary** ............................................. 202

### 5. Electrical Transport

#### 5.1 Quasi-Classical Approach ...................... 203

#### 5.2 Carrier Mobility for a Nondegenerate Electron Gas .... 206
- 5.2.1 Relaxation Time Approximation ............. 206
- 5.2.2 Nondegenerate Electron Gas in a Parabolic Band ..... 207
- 5.2.3 Dependence of Scattering and Relaxation Times on Electron Energy ............... 208
- 5.2.4 Momentum Relaxation Times .................. 209
- 5.2.5 Temperature Dependence of Mobilities ........ 220

#### 5.3 Modulation Doping ............................. 223

#### 5.4 High-Field Transport and Hot Carrier Effects ........ 225
- 5.4.1 Velocity Saturation .......................... 227
- 5.4.2 Negative Differential Resistance ............. 228
- 5.4.3 Gunn Effect .................................. 230

#### 5.5 Magneto-Transport and the Hall Effect .......... 232
- 5.5.1 Magneto-Conductivity Tensor ................. 232
- 5.5.2 Hall Effect .................................. 234
- 5.5.3 Hall Coefficient for Thin Film Samples (van der Pauw Method) ............... 235
- 5.5.4 Hall Effect for a Distribution of Electron Energies ... 236

**Problems** ............................................. 237
**Summary** ............................................. 241

### 6. Optical Properties I

#### 6.1 Macroscopic Electrodynamics .................. 244
- 6.1.1 Digression: Units for the Frequency of Electromagnetic Waves .......... 247
- 6.1.2 Experimental Determination of Optical Functions ........ 247
- 6.1.3 Kramers–Kronig Relations .................... 250

#### 6.2 The Dielectric Function .......................... 253
- 6.2.1 Experimental Results ........................ 253
- 6.2.2 Microscopic Theory of the Dielectric Function ........ 254
- 6.2.3 Joint Density of States and Van Hove Singularities .... 261
- 6.2.4 Van Hove Singularities in \( \varepsilon_i \) .............. 262
- 6.2.5 Direct Absorption Edges ....................... 268
- 6.2.6 Indirect Absorption Edges ..................... 269

**Summary** ............................................. 241
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.7</td>
<td>“Forbidden” Direct Absorption Edges</td>
<td>273</td>
</tr>
<tr>
<td>6.3</td>
<td>Excitons</td>
<td>276</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Exciton Effect at $M_0$ Critical Points</td>
<td>279</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Absorption Spectra of Excitons</td>
<td>282</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Exciton Effect at $M_1$ Critical Points or Hyperbolic Excitons</td>
<td>288</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Exciton Effect at $M_3$ Critical Points</td>
<td>291</td>
</tr>
<tr>
<td>6.4</td>
<td>Phonon-Polaritons and Lattice Absorption</td>
<td>292</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Phonon-Polaritons</td>
<td>295</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Lattice Absorption and Reflection</td>
<td>298</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Multiphonon Lattice Absorption</td>
<td>299</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Dynamic Effective Ionic Charges in Heteropolar Semiconductors</td>
<td>303</td>
</tr>
<tr>
<td>6.5</td>
<td>Absorption Associated with Extrinsic Electrons</td>
<td>305</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Free-Carrier Absorption in Doped Semiconductors</td>
<td>306</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Absorption by Carriers Bound to Shallow Donors and Acceptors</td>
<td>311</td>
</tr>
<tr>
<td>6.6</td>
<td>Modulation Spectroscopy</td>
<td>315</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Frequency Modulated Reflectance and Thermoreflectance</td>
<td>319</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Piezoreflectance</td>
<td>321</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Electroreflectance (Franz–Keldysh Effect)</td>
<td>322</td>
</tr>
<tr>
<td>6.6.4</td>
<td>Photoreflectance</td>
<td>329</td>
</tr>
<tr>
<td>6.6.5</td>
<td>Reflectance Difference Spectroscopy</td>
<td>332</td>
</tr>
<tr>
<td>6.7</td>
<td>Addendum (Third Edition): Dielectric Function</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>334</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>343</td>
</tr>
</tbody>
</table>

7. **Optical Properties II**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Emission Spectroscopies</td>
<td>345</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Band-to-Band Transitions</td>
<td>351</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Free-to-Bound Transitions</td>
<td>354</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Donor–Acceptor Pair Transitions</td>
<td>356</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Excitons and Bound Excitons</td>
<td>362</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Luminescence Excitation Spectroscopy</td>
<td>369</td>
</tr>
<tr>
<td>7.2</td>
<td>Light Scattering Spectroscopies</td>
<td>375</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Macroscopic Theory of Inelastic Light Scattering by Phonons</td>
<td>375</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Raman Tensor and Selection Rules</td>
<td>378</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Experimental Determination of Raman Spectra</td>
<td>385</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Microscopic Theory of Raman Scattering</td>
<td>394</td>
</tr>
<tr>
<td>7.2.5</td>
<td>A Detour into the World of Feynman Diagrams</td>
<td>395</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Brillouin Scattering</td>
<td>398</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Experimental Determination of Brillouin Spectra</td>
<td>400</td>
</tr>
<tr>
<td>7.2.8</td>
<td>Resonant Raman and Brillouin Scattering</td>
<td>401</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
<td>422</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>426</td>
</tr>
</tbody>
</table>