Contents

1. Introduction
1.1 A Survey of Semiconductors .. 2
1.1.1 Elemental Semiconductors ... 2
1.1.2 Binary Compounds ... 2
1.1.3 Oxides .. 3
1.1.4 Layered Semiconductors .. 3
1.1.5 Organic Semiconductors ... 4
1.1.6 Magnetic Semiconductors ... 4
1.1.7 Other Miscellaneous Semiconductors ... 4
1.2 Growth Techniques .. 5
1.2.1 Czochralski Method ... 5
1.2.2 Bridgman Method ... 6
1.2.3 Chemical Vapor Deposition ... 7
1.2.4 Molecular Beam Epitaxy .. 8
1.2.5 Fabrication of Self-Organized Quantum Dots by the Stranski–Krastanow Growth Method 11
1.2.6 Liquid Phase Epitaxy ... 13
Summary .. 14
Periodic Table of “Semiconductor-Forming” Elements 15

2. Electronic Band Structures ... 17
2.1 Quantum Mechanics ... 18
2.2 Translational Symmetry and Brillouin Zones 20
2.3 A Pedestrian’s Guide to Group Theory ... 25
2.3.1 Definitions and Notations ... 25
2.3.2 Symmetry Operations of the Diamond and Zinc-Blende Structures ... 30
2.3.3 Representations and Character Tables 32
2.3.4 Some Applications of Character Tables 40
2.4 Empty Lattice or Nearly Free Electron Energy Bands 48
2.4.1 Nearly Free Electron Band Structure in a Zinc-Blende Crystal ... 48
2.4.2 Nearly Free Electron Energy Bands in Diamond Crystals 52
2.5 Band Structure Calculations by Pseudopotential Methods 58
2.5.1 Pseudopotential Form Factors in Zinc-Blende- and Diamond-Type Semiconductors 61
2.5.2 Empirical and Self-Consistent Pseudopotential Methods 66
2.6 The $k\cdot p$ Method of Band-Structure Calculations 68
 2.6.1 Effective Mass of a Nondegenerate Band
 Using the $k\cdot p$ Method ... 69
 2.6.2 Band Dispersion near a Degenerate Extremum:
 Top Valence Bands in Diamond-
 and Zinc-Blende-Type Semiconductors 71

2.7 Tight-Binding or LCAO Approach to the Band Structure
 of Semiconductors ... 83
 2.7.1 Molecular Orbitals and Overlap Parameters 83
 2.7.2 Band Structure of Group-IV Elements
 by the Tight-Binding Method 87
 2.7.3 Overlap Parameters and Nearest-Neighbor Distances ... 94

Problems ... 96

Summary ... 105

3. Vibrational Properties of Semiconductors,
 and Electron–Phonon Interactions 107
 3.1 Phonon Dispersion Curves of Semiconductors 110
 3.2 Models for Calculating Phonon Dispersion Curves
 of Semiconductors ... 114
 3.2.1 Force Constant Models ... 114
 3.2.2 Shell Model ... 114
 3.2.3 Bond Models ... 115
 3.2.4 Bond Charge Models .. 117
 3.3 Electron–Phonon Interactions 121
 3.3.1 Strain Tensor and Deformation Potentials 122
 3.3.2 Electron–Acoustic-Phonon Interaction
 at Degenerate Bands .. 127
 3.3.3 Piezoelectric Electron–Acoustic-Phonon Interaction 130
 3.3.4 Electron–Optical-Phonon
 Deformation Potential Interactions 131
 3.3.5 Fröhlich Interaction .. 133
 3.3.6 Interaction Between Electrons and Large-Wavevector
 Phonons: Intervalley Electron–Phonon Interaction 135

Problems ... 137

Summary ... 158

4. Electronic Properties of Defects 159
 4.1 Classification of Defects .. 160
 4.2 Shallow or Hydrogenic Impurities 161
 4.2.1 Effective Mass Approximation 162
 4.2.2 Hydrogenic or Shallow Donors 166
 4.2.3 Donors Associated with Anisotropic Conduction Bands 171
 4.2.4 Acceptor Levels in Diamond-
 and Zinc-Blende-Type Semiconductors 174
 4.3 Deep Centers .. 180
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.7 “Forbidden” Direct Absorption Edges</td>
<td>273</td>
</tr>
<tr>
<td>6.3 Excitons</td>
<td></td>
</tr>
<tr>
<td>6.3.1 Exciton Effect at M_0 Critical Points</td>
<td>279</td>
</tr>
<tr>
<td>6.3.2 Absorption Spectra of Excitons</td>
<td>282</td>
</tr>
<tr>
<td>6.3.3 Exciton Effect at M_1 Critical Points or Hyperbolic Excitons</td>
<td>288</td>
</tr>
<tr>
<td>6.3.4 Exciton Effect at M_3 Critical Points</td>
<td>291</td>
</tr>
<tr>
<td>6.4 Phonon-Polaritons and Lattice Absorption</td>
<td>292</td>
</tr>
<tr>
<td>6.4.1 Phonon-Polaritons</td>
<td>295</td>
</tr>
<tr>
<td>6.4.2 Lattice Absorption and Reflection</td>
<td>298</td>
</tr>
<tr>
<td>6.4.3 Multiphonon Lattice Absorption</td>
<td>299</td>
</tr>
<tr>
<td>6.4.4 Dynamic Effective Ionic Charges in Heteropolar Semiconductors</td>
<td>303</td>
</tr>
<tr>
<td>6.5 Absorption Associated with Extrinsic Electrons</td>
<td>305</td>
</tr>
<tr>
<td>6.5.1 Free-Carrier Absorption in Doped Semiconductors</td>
<td>306</td>
</tr>
<tr>
<td>6.5.2 Absorption by Carriers Bound to Shallow Donors and Acceptors</td>
<td>311</td>
</tr>
<tr>
<td>6.6 Modulation Spectroscopy</td>
<td>315</td>
</tr>
<tr>
<td>6.6.1 Frequency Modulated Reflectance and Thermoreflectance</td>
<td>319</td>
</tr>
<tr>
<td>6.6.2 Piezoreflectance</td>
<td>321</td>
</tr>
<tr>
<td>6.6.3 Electoreflectance (Franz–Keldysh Effect)</td>
<td>322</td>
</tr>
<tr>
<td>6.6.4 Photoreflectance</td>
<td>329</td>
</tr>
<tr>
<td>6.6.5 Reflectance Difference Spectroscopy</td>
<td>332</td>
</tr>
<tr>
<td>6.7 Addendum (Third Edition): Dielectric Function</td>
<td>333</td>
</tr>
<tr>
<td>Problems</td>
<td>334</td>
</tr>
<tr>
<td>Summary</td>
<td>343</td>
</tr>
<tr>
<td>7. Optical Properties II</td>
<td></td>
</tr>
<tr>
<td>7.1 Emission Spectroscopies</td>
<td>345</td>
</tr>
<tr>
<td>7.1.1 Band-to-Band Transitions</td>
<td>351</td>
</tr>
<tr>
<td>7.1.2 Free-to-Bound Transitions</td>
<td>354</td>
</tr>
<tr>
<td>7.1.3 Donor–Acceptor Pair Transitions</td>
<td>356</td>
</tr>
<tr>
<td>7.1.4 Excitons and Bound Excitons</td>
<td>362</td>
</tr>
<tr>
<td>7.1.5 Luminescence Excitation Spectroscopy</td>
<td>369</td>
</tr>
<tr>
<td>7.2 Light Scattering Spectroscopies</td>
<td>375</td>
</tr>
<tr>
<td>7.2.1 Macroscopic Theory of Inelastic Light Scattering by Phonons</td>
<td>375</td>
</tr>
<tr>
<td>7.2.2 Raman Tensor and Selection Rules</td>
<td>378</td>
</tr>
<tr>
<td>7.2.3 Experimental Determination of Raman Spectra</td>
<td>385</td>
</tr>
<tr>
<td>7.2.4 Microscopic Theory of Raman Scattering</td>
<td>394</td>
</tr>
<tr>
<td>7.2.5 A Detour into the World of Feynman Diagrams</td>
<td>395</td>
</tr>
<tr>
<td>7.2.6 Brillouin Scattering</td>
<td>398</td>
</tr>
<tr>
<td>7.2.7 Experimental Determination of Brillouin Spectra</td>
<td>400</td>
</tr>
<tr>
<td>7.2.8 Resonant Raman and Brillouin Scattering</td>
<td>401</td>
</tr>
<tr>
<td>Problems</td>
<td>422</td>
</tr>
<tr>
<td>Summary</td>
<td>426</td>
</tr>
</tbody>
</table>
8. Photoelectron Spectroscopy

8.1 Photoemission

8.1.1 Angle-Integrated Photoelectron Spectra of the Valence Bands

8.1.2 Angle-Resolved Photoelectron Spectra of the Valence Bands

8.1.3 Core Levels

8.2 Inverse Photoemission

8.3 Surface Effects

8.3.1 Surface States and Surface Reconstruction

8.3.2 Surface Energy Bands

8.3.3 Fermi Level Pinning and Space Charge Layers

Problems

Summary

9. Effect of Quantum Confinement on Electrons and Phonons in Semiconductors

9.1 Quantum Confinement and Density of States

9.2 Quantum Confinement of Electrons and Holes

9.2.1 Semiconductor Materials for Quantum Wells and Superlattices

9.2.2 Classification of Multiple Quantum Wells and Superlattices

9.2.3 Confinement of Energy Levels of Electrons and Holes

9.2.4 Some Experimental Results

9.3 Phonons in Superlattices

9.3.1 Phonons in Superlattices: Folded Acoustic and Confined Optic Modes

9.3.2 Folded Acoustic Modes: Macroscopic Treatment

9.3.3 Confined Optical Modes: Macroscopic Treatment

9.3.4 Electrostatic Effects in Polar Crystals: Interface Modes

9.4 Raman Spectra of Phonons in Semiconductor Superlattices

9.4.1 Raman Scattering by Folded Acoustic Phonons

9.4.2 Raman Scattering by Confined Optical Phonons

9.4.3 Raman Scattering by Interface Modes

9.4.4 Macroscopic Models of Electron–LO Phonon (Frohlich) Interaction in Multiple Quantum Wells

9.5 Electrical Transport: Resonant Tunneling

9.5.1 Resonant Tunneling Through a Double-Barrier Quantum Well

9.5.2 I–V Characteristics of Resonant Tunneling Devices

9.6 Quantum Hall Effects in Two-Dimensional Electron Gases

9.6.1 Landau Theory of Diamagnetism in a Three-Dimensional Free Electron Gas

9.6.2 Magneto-Conductivity of a Two-Dimensional Electron Gas: Filling Factor
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6.3 The Experiment of von Klitzing, Pepper and Dorda</td>
<td>538</td>
</tr>
<tr>
<td>9.6.4 Explanation of the Hall Plateaus in the Integral Quantum Hall Effect</td>
<td>541</td>
</tr>
<tr>
<td>9.7 Concluding Remarks</td>
<td>545</td>
</tr>
<tr>
<td>Problems</td>
<td>546</td>
</tr>
<tr>
<td>Summary</td>
<td>551</td>
</tr>
</tbody>
</table>

Appendix A: Pioneers of Semiconductor Physics Remember…

- Ultra-Pure Germanium: From Applied to Basic Research or an Old Semiconductor Offering New Opportunities
 By *Eugene E. Haller* 555
- Two Pseudopotential Methods: Empirical and Ab Initio
 By *Marvin L. Cohen* 558
- The Early Stages of Band-Structures Physics and Its Struggles for a Place in the Sun
 By *Conyers Herring* 560
- Cyclotron Resonance and Structure of Conduction and Valence Band Edges in Silicon and Germanium
 By *Charles Kittel* 563
- Optical Properties of Amorphous Semiconductors and Solar Cells
 By *Jan Tauc* 566
- Optical Spectroscopy of Shallow Impurity Centers
 By *Elias Burstein* 569
- On the Prehistory of Angular Resolved Photoemission
 By *Neville V. Smith* 574
- The Discovery and Very Basics of the Quantum Hall Effect
 By *Klaus von Klitzing* 576
- The Birth of the Semiconductor Superlattice
 By *Leo Esaki* 578

Appendix B: Solutions to Some of the Problems 583

Appendix C: Recent Development 673

Appendix D: Recent Developments and References 687

References 719

Subject Index 755

Physical Parameters of Tetrahedral Semiconductors (Inside Front Cover)

Table of Fundamental Physical Constants (Inside Back Cover)

Table of Units (Inside Back Cover)
Fundamentals of Semiconductors
Physics and Materials Properties
YU, P.; Cardona, M.
2010, XXII, 778 p., Hardcover
ISBN: 978-3-642-00709-5