Contents

Introduction .. 1

1 An introduction to Hodge structures and Shimura varieties .. 11
 1.1 The basic definitions ... 12
 1.2 Jacobians, Polarizations and Riemann’s Theorem 19
 1.3 The definition of the Shimura datum 25
 1.4 Hermitian symmetric domains 35
 1.5 The construction of Shimura varieties 43
 1.6 The definition of complex multiplication 45
 1.7 Criteria and conjectures for complex multiplication ... 50

2 Cyclic covers of the projective line 59
 2.1 Description of a cyclic cover of the projective line 60
 2.2 The local system corresponding to a cyclic cover 62
 2.3 The cohomology of a cover 66
 2.4 Cyclic covers with complex multiplication 67

3 Some preliminaries for families of cyclic covers 71
 3.1 The generic Hodge group 71
 3.2 Families of covers of the projective line 73
 3.3 The homology and the monodromy representation 76

4 The Galois group decomposition of the Hodge structure 79
 4.1 The Galois group representation on the first cohomology .. 79
 4.2 Quotients of covers and Hodge group decomposition 84
 4.3 Upper bounds for the Mumford-Tate groups of the direct summands ... 85
 4.4 A criterion for complex multiplication 88
Contents

5 The computation of the Hodge group .. 91
 5.1 The monodromy group of an eigenspace 92
 5.2 The Hodge group of a general direct summand 99
 5.3 A criterion for the reaching of the upper bound 102
 5.4 The exceptional cases ... 106
 5.5 The Hodge group of a universal family of hyperelliptic curves .. 110
 5.6 The complete generic Hodge group 115

6 Examples of families with dense sets of complex multiplication fibers .. 121
 6.1 The necessary condition \(SINT \) 121
 6.2 The application of \(SINT \) for the more complicated cases 129
 6.3 The complete lists of examples 136
 6.4 The derived variations of Hodge structures 137

7 The construction of Calabi-Yau manifolds with complex multiplication ... 143
 7.1 The basic construction and complex multiplication 143
 7.2 The Borcea-Voisin tower ... 147
 7.3 The Viehweg-Zuo tower .. 150
 7.4 A new example .. 153

8 The degree 3 case .. 157
 8.1 Prelude .. 158
 8.2 A modified version of the method of Viehweg and Zuo 162
 8.3 The resulting family and its involutions 166

9 Other examples and variations ... 169
 9.1 The degree 3 case .. 170
 9.2 Calabi-Yau 3-manifolds obtained by quotients of degree 3 172
 9.3 The degree 4 case .. 178
 9.4 Involutions on the quotients of the degree 4 example 180
 9.5 The extended automorphism group of the degree 4 example ... 183
 9.6 The automorphism group of the degree 5 example by Viehweg and Zuo .. 185

10 Examples of \(CMCY \) families of 3-manifolds and their invariants ... 187
 10.1 The length of the Yukawa coupling 187
 10.2 Examples obtained by degree 2 quotients 188
 10.3 Examples obtained by degree 3 quotients 189
 10.4 Outlook onto quotients by cyclic groups of high order 196
11 Maximal families of CMCY type .. 199
 11.1 Facts about involutions and quotients of K3-surfaces 199
 11.2 The associated Shimura datum 201
 11.3 The examples .. 203

A Examples of Calabi-Yau 3-manifolds with complex multiplication
 A.1 Construction by degree 2 coverings of a ruled surface 209
 A.2 Construction by degree 2 coverings of \mathbb{P}^2 214
 A.3 Construction by a degree 3 quotient 217

References .. 223

Index ... 227
Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication
Rohde, C.
2009, IX, 228 p., Softcover
ISBN: 978-3-642-00638-8