Contents

1 Introduction ... 1

2 Background and State-of-the-Art 11
 2.1 Metaheuristics for Combinatorial Optimization 12
 2.1.1 A Philosophical and Historical Perspective 12
 2.1.2 The Optimization Problem 14
 2.1.3 Combinatorial Optimization 15
 2.1.4 On the Computational Complexity of Algorithms ... 18
 2.1.5 On the *a priori* Equivalence of Search Algorithms ... 22
 2.1.6 Exact Algorithms, Heuristics, and Metaheuristics 26
 2.1.7 A Bird’S-Eye View of Most Popular Metaheuristics 29
 2.1.8 Current Practice in Tuning Metaheuristics 33
 2.2 The Problem of Supervised Learning 39
 2.2.1 A Philosophical and Historical Perspective 39
 2.2.2 The Three Main Problems of Machine Learning 41
 2.2.3 Supervised Learning 43
 2.2.4 The Minimization of the Empirical Risk 47
 2.2.5 The Theory of Generalization 48
 2.2.6 Supervised Learning in Practice 54
 2.2.7 Racing Methods for Model Selection 61
 2.3 Discussion .. 67

3 Statement of the Tuning Problem 69
 3.1 An Informal Example 69
 3.2 The Formal Position of the Problem 74
 3.3 Possible Variants and Extensions 75
 3.3.1 Problem Subclasses and *a priori* Information 75
 3.3.2 Generic Probabilistic Models 77
 3.3.3 The Single-Instance Case 80
3.3.4 The Optimization of Generic Statistics 81
3.3.5 Time Versus Cost 81
3.4 Discussion 82

4 F-Race for Tuning Metaheuristics 85
4.1 How Many Instances, How Many Runs? 87
 4.1.1 Formal Position of the Estimation Problem 87
 4.1.2 First Order Analysis of the Estimator $\hat{\mu}_{SN}$ 90
 4.1.3 Second Order Analysis of the Estimator $\hat{\mu}_{SN}$ 91
 4.1.4 Yet Another Possible Estimator 96
 4.1.5 Remarks 100
4.2 The Brute-Force Approach 101
4.3 The Racing Approach 103
4.4 The Peculiarities of F-Race 109
4.5 Discussion 114

5 Experiments and Applications 117
5.1 Empirical Analysis of F-Race 118
 5.1.1 Iterated Local Search for Quadratic Assignment 124
 5.1.2 Ant Colony Optimization for Traveling Salesman 137
5.2 Some Applications of the Racing Approach 150
 5.2.1 Tuning Metaheuristics for Timetabling 151
 5.2.2 The International Timetabling Competition 154
 5.2.3 F-Race for Feature Selection 159
 5.2.4 Further Applications 165
5.3 Discussion 167

6 Some Considerations on the Experimental Methodology 171
6.1 Some Fundamental Methodological Issues 172
 6.1.1 On Some Measures of Performance 172
 6.1.2 On the Concept of Class of Instances 174
 6.1.3 On the Empirical Comparison of Algorithms 175
 6.1.4 On the Over-Tuning Phenomenon 177
6.2 Towards a Theory of Practice 183
 6.2.1 The Real-Life Setting 186
 6.2.2 The Proposed Methodology and Some Alternatives 188
6.3 Discussion 190
Appendix 191
6A Best Is Biased 191

7 Conclusions 197
References 203
Index 219
Tuning Metaheuristics
A Machine Learning Perspective
Birattari, M.
2009, X, 221 p., Hardcover
ISBN: 978-3-642-00482-7