Contents

Braids and Knots ... 1
Patrick D. Bangert

1 Physical Knots and Braids: A History and Overview 2
2 Braids and the Braid Group .. 4
 2.1 The Topological Idea .. 4
 2.2 The Origin of Braid Theory 5
 2.3 The Topological Braid 9
 2.4 The Braid Group .. 12
 2.5 Other Presentations of the Braid Group 16
 2.6 The Alexander and Jones Polynomials 18
 2.7 Properties of the Braid Group 21
 2.8 Algorithmic Problems in the Braid Groups 22
3 Braids and Knots ... 24
 3.1 Notation for Knots .. 24
 3.2 Braids to Knots .. 28
 3.3 Example: The Torus Knots 28
 3.4 Knots to Braids I: The Vogel Method 29
 3.5 Knots to Braids II: An Axis for the Universal Polyhedron . 31
 3.6 Peripheral Group Systems of Closed Braids 39
4 Classification of Braids and Knots 45
 4.1 The Word Problem I: Garside’s Solution 45
 4.2 The Word Problem II: Rewriting Systems 47
 4.3 The Conjugacy Problem I: Garside’s Solution 53
 4.4 The Conjugacy Problem II: Rewriting Systems 54
 4.5 Markov’s Theorem ... 59
 4.6 The Minimal Word Problem 62
5 Open Problems ... 69
References ... 70
Contents

2.2 Geodesics on Lie Groups .. 143
2.3 Geodesic Description for Various Equations 144
3 Euler Equations on Groups as Hamiltonian Systems and the
 Binormal Equation ... 144
 3.1 Hamiltonian Reformulation of the Euler Equations 144
 3.2 Hamiltonian Structure of the Landau-Lifschitz Equation ... 145
 3.3 Properties of the Binormal Equation 147
4 The KdV-Type Equations as Euler Equations 149
 4.1 The Virasoro Algebra and the KdV Equation 149
 4.2 Similar Equations and Conservation Laws 151
5 Hamiltonian Structure of the Euler Equations
 for an Incompressible Fluid 152
 5.1 The Euler Hydrodynamics as a Hamiltonian Equation 152
 5.2 The Space of Knots and the Dual of the Lie Algebra of
 Divergence-Free Vector Fields 155
References ... 156

Singularities in Fluid Dynamics and their Resolution 159
H.K. Moffatt (CIME Lecturer)
1 Introduction ... 159
2 Boundary-Driven Singularities 160
3 Cusp Singularities at a Free Surface 162
4 A Simple Finite-Time Singularity: the Euler Disk 163
5 Finite-Time Singularities at Interior Points 165
References ... 168

Structural Complexity and Dynamical Systems 169
Renzo L. Ricca (School Director and CIME Lecturer)
1 Introduction ... 169
2 Helmholtz’s Work on Vortex Motion: Birth of Topological Fluid
 Mechanics .. 170
 2.1 Multi-Valued Potentials in Multiply Connected Regions ... 170
 2.2 Green’s Theorem in Multiply Connected Regions 174
 2.3 Conservation Laws .. 175
3 Measures of Structural Complexity 175
 3.1 Dynamical Systems and Vector Field Analysis 176
 3.2 Measures of Tangle Complexity 177
4 Topological Bounds on Energy and Helicity-Crossing Number
 Relations for Magnetic Knots and Links 184
 4.1 Topology Bounds Energy in Ideal Fluid 185
 4.2 Helicity-Crossing Number Relations in Dissipative Fluid ... 187
References ... 187
Random Polymers
École d'Été de Probabilités de Saint-Flour XXXVII - 2007
den Hollander, F.
2009, XIV, 266 p. 84 illus., Softcover
ISBN: 978-3-642-00332-5