Breast-Conserving Surgery for Central Tumours: “NACectomies”

Introduction

Centrally located tumours have long been considered to be more serious, multifocal and more likely to recur. In fact, this is not the case; the only real problem is ensuring that the breast is preserved with a “normal” form following breast-conserving surgery and adjuvant radiotherapy.

As with more peripheral tumours, central tumours may also benefit from breast-conserving surgery. Several techniques have been used depending on the tumour and the size and form of the breast.

Periareolar Technique

This comprises an en bloc excision, via a periareolar incision, of the nipple-areola complex (NAC) and underlying tissue as far as the prepectoral fascia (Fig. 2.1). The mammary gland is then raised at this plane and reconstitution of the gland effected by approximating the breast parenchyma. This is performed from deep to superficial, and produces a breast with a reduced base width but increased projection. In this way, one can avoid the “flat” appearance seen in the reconstructed breast following central tumourectomy without gland remodelling (Fig. 2.2). A submammary drain is used and, where required, the skin is raised separately to facilitate closure in a “purse-string” fashion (Fig. 2.3).

Horizontal Technique

This is similar to the periareolar technique in all respects except the skin incision, which is semielliptical, in the shape of an eye, with the NAC resembling the iris (Fig. 2.4 and plate 2.1). Gland remodelling is identical, but skin closure is direct, yielding a transverse linear scar (Fig. 2.5). In cases of more pronounced ptosis, a longer incision may be used. This technique thus approximates the omega mammaplasty without NAC preservation.

Mammaplasty-Associated Techniques

If the tumour is larger or deeper, and the breast parenchymal volume allows a breast reduction can be performed in association with NACectomy. The design is generally either purely vertical or an inverted T (Fig. 2.5 and plate 2.2), but it can also involve other plasties, such as J-plasty or lateral mammaplasty.

A symmetrising procedure on the contralateral breast is frequently required in a subsequent operation after adjuvant radiotherapy has been completed. All techniques are available, depending on the requirements: periareolar is usually used for small modifications, but vertical-scar, inverted-T and lateral mammaplasty are also used according to the final form of the treated breast. NAC reconstruction is conveniently performed at this second sitting, with either areolar skin grafting and a nipple graft or local flaps (Little’s technique), or areolar tattooing and local flaps (F flap) (see Chap. 6).
Central tumours represent 5–20% of breast cancers and are treated in the same fashion as those that are more peripherally located. Resection must be similarly wide to avoid surgical re-excisions and secondary mastectomies.

Discussion

Overall survival, risk of recurrence and metastatic disease are identical to other tumour locations.

Deep central tumours that are more than 3 cm from the areola are considered to be “peripheral” and are therefore treated accordingly.

In a series of 146 patients at the Institut Curie, central tumours represented 7.5% of the cases, had a mean size of 21.5 mm, and a mean distance from the areola of 5.2 mm. The most common techniques were horizontal \((n = 72\%)\), periareolar \((n = 14\%)\) and inverted T \((n = 6\%)\). In the remainder \((n = 9\%)\), other techniques such as lateral and vertical-scar mammoplasty were employed.

Symmetrising surgery was undertaken at the same time in only 17%.

The complication rate was low, of the order of 9%, comprising predominantly haematoma, wound breakdown, delayed healing and infection.

Histopathological evaluation showed:

- Clear excision margins in more than 80%
- Minimally clear margins (within 2 mm) in 11%
- Involved margins in 9%
- Areolar invasion/involvement in 62%

These incomplete margins were treated with:

- Completion mastectomy in 9 patients
- A further wide excision plus radiotherapy in 2 patients
- An additional “boost” of local radiotherapy in 12 patients

Secondary NAC reconstruction was performed in a third of patients.
Plate 2.1a–f Surgical treatment of central tumours; NACectomy with horizontal incision

a medial retroareolar tumour
b horizontal semielliptical excision with skin-gland dissection

c operative specimen with nipple areolar complex en bloc with the glandular cone
d NACectomy to the prepectoral fascia

e reconstitution of glandular cone by approximation commencing deeply
f skin closure giving a good result in both form and volume
Patients were satisfied in more than 90% of cases, with a failure and poor result rate of 4.3%.

With a mean follow up in excess of 64 months, the overall survival was 96%, disease-free survival was 91%, and five-year local recurrence rate was 8.2%, half of which were remote from the initial tumourectomy.

Conclusion

The management of central, retroareolar tumours is comparable to that of other conservative treatments. The challenge is to remodel the breast such that it retains a normal form prior to radiotherapy, because this form becomes fixed and subsequent surgery on an irradiated breast is much more difficult. The quality of the initial result from primary surgery is therefore paramount. (Results are displayed in Plates 2.3 and 2.4).

Plastic Surgical Techniques in Breast Cancer Surgery (Oncoplastic Breast Surgery)

Introduction

Conservative surgery in breast cancer management has long been the standard for tumours < 3 cm. More recent series have extended the indications for breast-conserving surgery to include tumour sizes of up to 4 cm (Fisher et al. 1995), 5 cm (van Dongen 2000; Jacobson et al. 1995), and even larger for intraductal cancer (Fisher et al. 1995; Solin et al. 1996).

The predominant issue remains the compromise between a wide excision with clear margins and a satisfactory aesthetic result. This problem is far easier to solve if the breast volume is sufficient to allow an oncoplastic technique.

Thanks to a variety of plastic surgical techniques, this conflict can now be resolved in the majority of cases without producing a deformed breast (Clough et al. 1990).

Once remodelled, the breast is smaller and higher with a narrower base, but its form remains normal. A symmetrising procedure is frequently required on the contralateral breast. This may, if practical, be performed at the same operative sitting, but is usually performed some months after completion of all treatments, particularly radiotherapy.

The techniques used early in our experience included superior-pedicle, inverted-T mammoplasty, from plastic surgery, followed by J- and L-mammoplasties.

Other techniques have been developed over time and are adapted to specific tumour locations, including: inferior pedicle (for those at the junction of the superior quadrants), lateral mammoplasty (for laterally-based tumours), and the omega and V techniques (for superior and superomedial cancers, respectively). Medial tumours can be addressed with the mirror image of lateral mammoplasty: medial mammoplasty. Finally, techniques specifically intended for tumours around the IMF have been developed in order to minimise scarring and, if possible, symmetrisation on the contralateral side.

Oncoplastic techniques may be equally performed following neoadjuvant chemotherapy. Regression of the lesion, demonstrating response of the tumour to treatment, permits breast-conserving surgery so long as one allows sufficient time to ensure that surgery can be performed without undue haemorrhagic and infectious complications. On the other hand, we found that oncoplastic procedures after primary radiotherapy made for difficult subsequent surgery and generally poorer aesthetic results. Radiotherapy is thus reserved for postoperative treatment.

It is essential to clearly mark the excision margins with clips and document the procedure to enable the radiotherapist to calculate the optimal field of irradiation.
and, if necessary the boost required, for limitation of unnecessary irradiation.

At the Institut Curie we utilise ten plastic techniques according to tumour location (Figure 2.6). These therapeutic options may also be varied depending on the form and size of the breast, existing scars, and the requirement for cutaneous excision with some tumours. The desire to avoid symmetrising the contralateral breast also influences technique selection.

Oncoplastic Breast Surgery Techniques

Superior-Pedicle, Inverted-T Mammaplasty

This technique is used for tumours at the junction of the inferior quadrants, as well as those inferolateral, inferomedial and close to the IMF (Plate 2.5).

The NAC, is supported on a superior-pedicle flap following de-epithelialisation, is elevated.
(Fig. 2.5b). This flap is several millimetres thick and is plicated. The mammary gland is raised from the prepectoral fascia following incision at the IMF (Fig. 2.5c). Finally, the intervening gland is excised, with a wide tumour and skin resection, at the junction of the inferior quadrants (Fig. 2.5f). The breast pillars are then reapproximated and the skin closed (Fig. 2.5g).
In this fashion, a satisfactory result can be obtained producing a smaller, higher and narrower breast (Plate 2.6).

When contralateral symmetrisation is required, it is usually done with the same technique and gland resection (with both resections being weighed), and synchronously if circumstances allow.

If the tumour is lateral or medial, a glandular rotation flap may be fashioned in order to fill the parenchymal defect (Plate 2.6).
In cases of significant breast hypertrophy, an immediate NAC graft, using Thorek’s technique, may be used (Thorek et al. 1989). This involves an inverted-T excision with full-thickness harvesting of the NAC, which is grafted at the summit of the vertical incision. This technique applies principally to very large and ptotic breasts where the NAC pedicle will be too long and therefore poorly vascularised (Figs. 2.7).

Vertical-Scar Mammaplasty

This technique is used for tumours at the inferior quadrant junction in smaller, non-ptotic breasts of medium size. It is the same as the inverted T, but without the IMF incision (Plate 2.8). It derives from Lejour’s vertical-scar technique (Lejour et al. 1999), and on occasion a glandular rotation flap (Plate 2.8d) is required to reconstitute the defect left after tumourectomy.

J- and L-Mammaplasty

These have similar indications to the vertical-scar and are ideal for tumours localised to the inferior or inferolateral quadrants (Plate 2.9).

The vertical incision below the areola is extended laterally, allowing limitation of the inframammary scar in large-volume breasts.

These techniques sit between a pure vertical-scar and an inverted-T mammaplasty.
Plate 2.5a–g Schematic of inverted-T mammoplasty a. operative design for tumour lying within area of excision; b. periareolar deepithelialisation; c. IMF incision and dissection of the breast at the pre-pectoral plane; d. raising of the superiorly-based NAC flap; e. approximation of the breast parenchymal pillars; f. very wide excision specimen; g. resulting scars
Inferior-Pedicle Inverted-T Mammaplasty

This technique is ideal for superior quadrant junction tumours that are close enough to the areola (particularly in ptotic breasts) (Plate 2.10). As in aesthetic surgery, it allows rejuvenation via the inferior pedicle; the zone of quadrantectomy is at the junction of the superior quadrants (Plates 2.10 and 2.11).

Plate 2.6a–f Inverted-T mammaplasty for inferior quadrant tumours

Inferior-Pedicle Inverted-T Mammaplasty

- a operative design
- b periareolar deepithelialisation
- c elevation of the breast at the pre-pectoral plane
- d wide excision specimen
- e breast following tumourectomy
- f on-table result
Plate 2.7a–h Inverted-T mammoplasty with NAC graft: Thorek technique
The resulting scars are identical to those obtained with superior-pedicle inverted-T techniques (Plate 2.10f).

The resection, where tumour and skin are removed en bloc to the pectoral plane, corresponds to the future site of the NAC (Plate 2.10a). The skin is raised later-
Plate 2.9a–f J-mammaplasty technique

a operative design for infero-lateral tumour
b on-table result with NAC preservation
c pre-operative
d post-operative without NAC preservation
e operative specimen
f mature scar
ally, leaving the NAC vascularised by an inferior pedicle (Plate 2.10d,e). Thick parenchymal flaps supplied by intercostal perforators, are then raised and transposed to fill the tumourectomy defect. Skin closure completes the procedure, and the breast is higher on the chest wall, thereby correcting ptosis (Plate 2.10f).
This technique facilitates the removal of any skin associated with the tumour, and gland resection is, as usual, to the prepectoral plane (Plate 2.11b).

If required, symmetrisation is more easily performed on the contralateral breast with a superior-pedicle procedure.

Periareolar Mammoplasty

This is used for tumours at the junction of the superior quadrants, as well as those superolateral or -medial, but that are close to the areola (Plates 2.12 and 2.13). The technique is comparable to the ‘round block’ used
in aesthetic surgery (Benelli et al. 1990). On occasion, inferior tumours close to the areola are also amenable to this technique.

Following oval periareolar de-epithelialisation, except if the tumour is adjacent to skin, the superior quadrant skin is raised and a wide tumourectomy is performed (Plate 2.12b). The glandular pillars are mobilised (Plate 2.12d), rotated and sutured to one another, allowing reconstitution of the gland, which will have a slightly narrower base. The skin is then closed, gathering the larger oval to the smaller areola to yield a pleated appearance (see Plate 2.12f).

Plate 2.12a–f Periareolar technique for tumours close to the areola that require breast remodelling
Being a simple and reliable intervention with minimal skin-gland dissection, closure is both easy and reliable. After periareolar de-epithelialisation a cutaneo-glandular incision is made to the prepectoral fascia (Plate 2.14c). This quadrantectomy removes the tumour in a wide resection (Plate 2.14d).

Lateral Mammaplasty

Tumours at the lateral quadrant junction or, superolateral, are by far the most frequent, and this technique is therefore finding increasing use at our institution (Plates 2.14 and 2.15).

Plate 2.13a-f Periareolar technique
Lateral mammaplasty for tumours of the lateral quadrants

The breast is then raised, if required, at the subglandular plane, and the gland and skin are reapproximated to produce a higher breast with a narrower base. The resulting scar is periareolar with a lateral radial extension (Plate 2.14f).

The NAC is transposed higher and more medially to avoid the inevitable inferolateral retraction following radiotherapy. Symmetrisation may be performed at the same time or later using the same technique.
One can sometimes stagger the skin and gland incisions to prevent the cutaneous scar from riding too high. A glandular flap is used to fill the deficit produced by the tumourectomy.

Omega Mammaplasty

This technique is ideal for superior quadrant and superomedial tumours, particularly in ptotic breasts.

Plate 2.15a–f Lateral mammaplasty for tumourectomy and immediate symmetrisation
(Plate 2.16a) that involves an en bloc excision of skin, gland and tumour, which is widely resected to the prepectoral plane (Plate 2.16).

The inferior quadrants and NAC are elevated and attached to the upper part following excision.

This simple technique allows the management, without extensive skin-gland dissection, of tumours in difficult locations (superomedial, particularly those situated very high) in combination with ptosis correction.

The skin associated with the tumour is removed and the resulting scar invariably improved by radiotherapy.

Contralateral breast symmetrisation is generally performed with an alternative technique (Plate 2.17).
The medial mammoplasty technique for medial tumours is conceptually equivalent to the lateral mammoplasty. It is, however, more challenging due to the much reduced tissue volume and relative immobility of the inferomedial breast. Furthermore, inferomedial tumours frequently require skin to be included with the tumour resection.

Plate 2.17a–f Omega technique and vertical-scar contra-lateral symmetrisation

Medial Mammoplasty (Plate 18)

The medial mammoplasty technique for medial tumours is conceptually equivalent to the lateral mammoplasty.
Periareolar de-epithelialisation and radial extension for tumour excision are similarly performed. Because of the relative paucity of gland, however, suture of the adjacent breast pillars is not always possible. In these cases, a lateral cutaneoglandular flap (Plate 2.19) is raised by incising the inframammary fold and then rotated medially into the defect. As usual, the resulting breast has a narrower base and sits higher on the thoracic wall.

Plate 2.18a–e medial mammoplasty technique with NAC repositioning and direct closure
Inferior Mammary Fold (IMF) Mammaplasty

Designed for tumours at or slightly above the IMF, this technique makes it possible to avoid significant scars (as with the inverted-T) by lowering the IMF. This simple technique can be associated when required with one or two adipodermal flaps (derived from Holström’s technique, Chapter 4) if the glandular deficit is significant (Plate 2.20).

When the tumour occupies the IMF it is completely excised, taking a good centimetre above and below the fold for adequate margins.

Excision is performed en bloc to the prepectoral fascia, and the two wound edges are attached to each other; this reduces segment 3, so it cannot be used with short areola–IMF distances, but it is useful for modifying the lower breast pole, particularly when ptotic.
We reviewed 299 consecutive breast cancer patients treated between 1985 and 2003 at the Institut Curie. This series concerned patients with high tumour-to-breast volume ratios or tumours in difficult locations. Mammaplasty allowed sufficient oncological resection and the avoidance of poor aesthetic results.

The mean age was 52 years (29–91). The tumour was within the superior quadrants in 17%, medial in 19%, lateral in 20%, and at the inferior quadrant junction in 43%. The mean weight of resection in our recent series was 232 g (range 10–1,700) (Staub 2008). Symmetrisation was performed immediately in 64% and at a later date in the remainder (approximately six months after irradiation).

Plate 2.20a–f IMF mammaplasty for tumours close to the inframammary fold

a operative design for bilateral lower pole tumours
b excision of right infero-medial tumour
c use of lateral parenchymal flap to preserve volume
d right tumourectomy
e right medial parenchymal flap rotated to preserve projection
f on-table result
The mean size of these lesions was 30 mm (range 4–80) before any treatment and 25 mm (0–80 mm) after neoadjuvant chemotherapy.

The tumours were T_0 ($n = 18\%$), T_1 ($n = 18\%$), T_2 ($n = 54\%$) and larger in 10%. Skin involvement was seen in four patients.

Histopathological types included carcinoma in situ ($n = 25\%$); infiltrating ductal with or without with an intraductal component ($n = 63\%$); infiltrating lobular ($n = 6\%$); and a single case of Paget's disease.

Mammaplasty was necessary in 50% to avoid mastectomy, because of tumour location or breast deformation. In 15% it was dictated by sheer tumour volume, and in the remainder it was due to a combination of location and anticipated deformity.

Discussion

Involved excision margins are one of the principal factors in local tumour recurrence. Some authors, including Veronesi, have therefore suggested that extra-wide “quadrantectomies” should always be performed; however, the deformities they can produce are difficult to accept at an aesthetic level.

Mammaplasties for cancer have therefore allowed reconciliation of the dual objectives of clear excision margins and aesthetically acceptable remodelling of the breast.

In our series, despite wide glandular resections with a mean weight of > 200 g, the rate of good or very good results has been very high (> 85%).

These interventions are certainly most easily adapted to medium- or large-volume breasts, but may on occasion be used effectively in smaller breasts too. The rate of breast deformity would therefore be much increased in the absence of the various techniques described above.

The scar burden, sometimes significant, is often well accepted when the alternative is a radical mastectomy, and radiotherapy usually improves the long-term appearance with little fibrous reaction. It is paradoxical that patients will often complain more about the symmetrised than the treated side, as irradiation minimises hypertrophic scarring.

The advantages of such “Oncoplastic Breast Surgery” are clear:

- Quality of excision margins
- Increase in breast-conserving treatments
- Reduction in adverse aesthetic sequelae following conservation
- Overall survival and five-year recurrence rates that are identical to standard conservative surgery
- Immediate symmetry without other reconstructive gestures

On the other hand, the duration of intervention is lengthened, and specifically trained surgeons are required to obtain optimal results.

Conclusion

The integration of oncoplastic techniques into breast cancer surgery has allowed us to reduce the rate of mastectomy and the adverse sequelae of breast-conserving surgery.

Mastectomies are avoided in instances of sizeable tumour volume, difficult tumour location, or high tumour-to-breast volume ratios.

These limits may also be extended by diminishing the preoperative tumour volume using a medical treatment (chemotherapy or hormonal therapy). It is important, however, to understand that radiotherapy must only be used postoperatively, because it greatly increases poor aesthetic results when used preoperatively.

References

Oncoplastic and Reconstructive Surgery for Breast Cancer
The Institut Curie Experience
Fitoussi, A.; Berry, M.G.; Couturaud, B.; Salmon, R.J.
2009, XI, 150 p., Hardcover
ISBN: 978-3-642-00143-7