Contents

Part I Introduction

1 **Old-Growth Forests: Function, Fate and Value – an Overview** 3
 Christian Wirth, Gerd Gleixner, and Martin Heimann
 1.1 Old-Growth Forest Perception .. 3
 1.2 Old-Growth Forest Services ... 5
 1.3 Aims and Scope .. 5
 References .. 9

2 **Old-Growth Forest Definitions: a Pragmatic View** 11
 Christian Wirth, Christian Messier, Yves Bergeron, Dorothea Frank, and Anja Fankhānel
 2.1 Introduction .. 11
 2.2 Old-Growth Forest Definitions and their Limitations 12
 2.2.1 Structural Definitions 12
 2.2.2 Successional Definitions 15
 2.2.3 Biogeochemical Definitions 18
 2.3 Use of the Term “Old-Growth” – a Literature Survey 19
 2.4 Old-Growth and the Disturbance Spectrum 24
 2.4.1 Temporal Scale ... 24
 2.4.2 Spatial Scale .. 27
 2.5 Identifying Old-Growth – the Conservation Perspective 27
 2.6 Conclusions and Pragmatic Considerations 29
 References .. 31

3 **Old Trees and the Meaning of ‘Old’** 35
 Fritz Hans Schweingruber and Christian Wirth
 3.1 Introduction .. 35
 3.2 Longevity of Conifers and Angiosperms 35
 3.3 What Limits the Life Span of a Tree? 39
 3.3.1 Programmed Cell Death 39
 3.3.2 Whole Plant Longevity – Internal Versus External Factors .. 40
3.4 Concluding Remarks ... 52
References ... 53

Part II Aboveground Processes

4 Ecophysiological Characteristics of Mature Trees and Stands – Consequences for Old-Growth Forest Productivity 57
Werner L. Kutsch, Christian Wirth, Jens Kattge, Stefanie Nöllert, Matthias Herbst, and Ludger Kappen
4.1 Introduction .. 57
4.2 Increased Respiratory Demand 57
4.3 Limitations of Photosynthesis 58
 4.3.1 Hydraulic Limitation 58
 4.3.2 Reduced Sink Strength 62
4.4 Stand-Level Controls ... 63
4.5 Community and Ecosystem Constraints on Age/Size-Productivity Relationships ... 65
 4.5.1 Light, Water and Nutrient Availability 67
 4.5.2 Shifts in Ecophysiological Traits with Changes in Community Composition 67
 4.5.3 Imperfect Acclimatisation of Late-Successional to Full Sunlight: A Case Study on European Beech (Fagus sylvatica) 72
4.6 Conclusions ... 75
References ... 76

5 The Imprint of Species Turnover on Old-Growth Forest Carbon Balances – Insights From a Trait-Based Model of Forest Dynamics .. 81
Christian Wirth and Jeremy W. Lichstein
5.1 Introduction .. 81
5.2 A Trait-Based Model of Forest Carbon Dynamics 83
 5.2.1 Successional Guilds .. 83
 5.2.2 Model Structure .. 84
 5.2.3 Input Data .. 87
 5.2.4 Model Setup .. 89
5.3 The Spectrum of Traits ... 89
5.4 Model Performance and Lessons from the Equilibrium Behaviour ... 91
5.5 The Spectrum of Carbon Trajectories in North American Forests ... 94
5.6 Determinants of Old-Growth Carbon Stock Changes 96
5.7 Discussion .. 99
 5.7.1 Limitations of Our Approach 99
 5.7.2 Comparison with Independent Data 99
 5.7.3 Why so Few Declines? 106
6 Functional Relationships Between Old-Growth Forest Canopies, Understorey Light and Vegetation Dynamics

Christian Messier, Juan Posada, Isabelle Aubin, and Marilou Beaudet

6.1 Introduction ... 115
6.2 Structural and Compositional Features of Old-Growth 115
6.3 Understorey Light Environments and Dynamics 117
6.4 Consequences for Understorey Vegetation Composition and Dynamics .. 125

6.4.1 Traits of the Understorey Vegetation 126
6.5 Acclimatisation of Plant Form and Function to Low Light Availability .. 126
6.6 Resource Allocation and Shade Tolerance .. 131

6.6.1 Comparison among Biomes and Forest Types 131
6.7 Conclusions .. 133
References .. 134

7 Biosphere–Atmosphere Exchange of Old-Growth Forests: Processes and Pattern

Alexander Knohl, Ernst-Detlef Schulze, and Christian Wirth

7.1 Introduction .. 141
7.2 Characteristics of Old-Growth Forests Relevant for Biosphere–Atmosphere Exchange .. 142
7.3 Exchange of Carbon Dioxide .. 143
7.4 Exchange of Water and Energy 149
7.5 Effect of Diffuse Light .. 151
7.6 Conclusions ... 153
References ... 154

8 Woody Detritus Mass and its Contribution to Carbon Dynamics of Old-Growth Forests: the Temporal Context

Mark E. Harmon

8.1 Introduction .. 159
8.2 Underlying Processes .. 160

8.2.1 Disturbance .. 160
8.2.2 Forest Re-Establishment ... 161
8.2.3 Mortality ... 162
8.2.4 Decomposition ... 164
8.2.5 CWD Amounts in Old-Growth Forests 169
8.3 Theoretical Trends ... 169
8.4 Comparison of Theoretical and Observed Temporal Trends 178
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.1 Studies Matching the Classic Model</td>
<td>178</td>
</tr>
<tr>
<td>8.4.2 Studies Not Matching the Classic Model</td>
<td>180</td>
</tr>
<tr>
<td>8.5 Effect of Management</td>
<td>182</td>
</tr>
<tr>
<td>8.6 Consequences for Net Ecosystem Carbon Balance</td>
<td>183</td>
</tr>
<tr>
<td>8.7 Reducing Observational Uncertainties</td>
<td>185</td>
</tr>
<tr>
<td>8.8 Conclusions</td>
<td>186</td>
</tr>
<tr>
<td>References</td>
<td>187</td>
</tr>
</tbody>
</table>

Part III Belowground Processes

9 **Aboveground and Belowground Consequences of Long-Term Forest Retrogression in the Timeframe of Millennia and Beyond**
David A. Wardle
9.1 Introduction | 193 |
9.2 Lake Islands in Northern Sweden | 195 |
9.3 Retrogressive Successions Elsewhere in the World | 200 |
9.4 Conclusions | 205 |
References | 206 |

10 **Rooting Patterns of Old-Growth Forests: is Aboveground Structural and Functional Diversity Mirrored Belowground?**
Jürgen Bauhus
10.1 Introduction | 211 |
10.2 What Comprises Belowground Structural Diversity? | 212 |
10.3 Root Gaps and Horizontal Variation in Rooting Density in Old-Growth Forests | 213 |
10.4 Pit-and-Mound Topography in Old-Growth Forest | 219 |
10.5 Old-Growth Structures Harbouring Roots | 220 |
10.6 Influence of Stand Age on Diversity of Functional Root Types, Mycorrhizae, and the Vertical Patterning of Root Systems | 222 |
10.7 Conclusions | 225 |
References | 225 |

11 **Soil Carbon Accumulation in Old-Growth Forests** | 231 |
Gerd Gleixner, Cindy Tefs, Albrecht Jordan, Matthias Hammer, Christian Wirth, Angela Nueske, Alexander Telz, Uwe E. Schmidt and Stephan Glatzel
11.1 Introduction | 231 |
11.2 Development of Soil Carbon Stocks in Ecosystems | 231 |
11.3 Soil Carbon Storage in Old-Growth Forests | 234 |
11.3.1 Effects of Quantity and Quality of Input Material | 234 |
11.3.2 Effects of Organic Matter Decomposition and Soil Respiration | 237 |
11.3.3 Drainage of Dissolved Carbon from Forest Ecosystems

11.3.4 Soil Carbon Stock Changes

11.4 Case Study of Soil Carbon Sequestration in a 250-Year-Old Beech Forest

11.4.1 Site Description and Experimental Setup

11.4.2 Historical Carbon Export

11.4.3 Soil Respiration in Hainich NP

11.4.4 Carbon Export to the Liquid Phase

11.4.5 Development of Carbon Stocks

11.5 Discussion of Carbon Stock Changes

11.6 Conclusions

References

12 Is There a Theoretical Limit to Soil Carbon Storage in Old-Growth Forests? A Model Analysis with Contrasting Approaches

Markus Reichstein, Göran I. Ågren, and Sébastien Fontaine

12.1 Introduction

12.2 Observations of Old-Growth Forest Carbon Balance

12.3 Is There a Theoretical Limit to Soil Carbon Storage?

12.3.1 Classical Carbon Pool Models

12.3.2 Alternative Model Concepts of Soil Carbon Dynamics

12.3.3 Complicating Factors not Considered

12.4 Perspectives for a New Generation of Models

12.4.1 Models Connecting the Decay Rate of Soil Carbon to the Size, Activity and Functional Diversity of Microbe Populations

12.4.2 Determining the Mechanisms Stabilising Recalcitrant Soil Carbon

12.5 Conclusions

References

Part IV Biomes

13 Old-Growth Forests in the Canadian Boreal: the Exception Rather than the Rule?

Yves Bergeron and Karen A. Harper

13.1 Introduction

13.2 Abundance of Old-Growth Forests

13.3 Characteristics of Old-Growth Boreal Forests

13.3.1 Old-Growth Black Spruce Boreal Forest

13.3.2 Old-Growth Mixedwood Boreal Forest

13.3.3 Characterisation of Old-Growth Boreal Forests

13.4 Implications for Forest Management
14 Biomass Chronosequences of United States Forests: Implications for Carbon Storage and Forest Management 301
Jeremy W. Lichstein, Christian Wirth, Henry S. Horn, and Stephen W. Pacala

14.1 Forest Management and Carbon Sequestration 301
14.2 Mechanisms of Biomass Decline 302
14.2.1 Transition from Even- to Uneven-Aged Stand Structure ... 302
14.2.2 Large Mortality Events .. 303
14.2.3 Successional Changes in Growth Conditions 304
14.2.4 Species Effects on Forest Stature 305
14.3 Aboveground Biomass Chronosequences for US Forests 305
14.3.1 Methods ... 306
14.3.2 Results ... 312
14.4 Discussion .. 328
14.4.1 Late-Successional AGB Trajectories 328
14.4.2 Summary and Validity of Results 333
14.4.3 Implications ... 334
References .. 336

15 Temperate and Boreal Old-Growth Forests: How do Their Growth Dynamics and Biodiversity Differ from Young Stands and Managed Forests? 343
Ernst-Detlef Schulze, Dominik Hessenmoeller, Alexander Knohl, Sebastiaan Luyssaert, Annett Boerner, and John Grace

15.1 Introduction .. 343
15.2 Global Distribution of Temperate and Boreal Forests 345
15.3 Productivity of Temperate and Boreal Forests 346
15.4 Disturbance and Forest Succession at the Regional Scale ... 355
15.5 Effects of Management ... 358
15.6 Forest Management and Forest Protection in Europe 360
15.7 Conclusions .. 363
References .. 364

16 Old-Growth Temperate Rainforests of South America: Conservation, Plant–Animal Interactions, and Baseline Biogeochemical Processes ... 367
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>367</td>
</tr>
<tr>
<td>16.2</td>
<td>Conservation Status, Values and Threats</td>
<td>369</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Main Threats</td>
<td>370</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Values</td>
<td>373</td>
</tr>
<tr>
<td>16.2.3</td>
<td>Conservation Prospects</td>
<td>375</td>
</tr>
<tr>
<td>16.3</td>
<td>Plant–Animal Interactions</td>
<td>377</td>
</tr>
<tr>
<td>16.4</td>
<td>Biogeochemistry</td>
<td>380</td>
</tr>
<tr>
<td>16.4.1</td>
<td>Relevant Features of the Nitrogen Cycle in Unpolluted South American Forests</td>
<td>381</td>
</tr>
<tr>
<td>16.4.2</td>
<td>Human Impact on Biogeochemistry of Southern Forests</td>
<td>383</td>
</tr>
<tr>
<td>16.5</td>
<td>Conclusions</td>
<td>384</td>
</tr>
<tr>
<td>References</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Tropical Rain Forests as Old-Growth Forests</td>
<td>391</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>391</td>
</tr>
<tr>
<td>17.2</td>
<td>Structure</td>
<td>392</td>
</tr>
<tr>
<td>17.3</td>
<td>Physiological Attributes</td>
<td>395</td>
</tr>
<tr>
<td>17.4</td>
<td>Are Rain Forests Carbon Sinks?</td>
<td>397</td>
</tr>
<tr>
<td>17.5</td>
<td>Are There Recent Changes in Species Composition?</td>
<td>399</td>
</tr>
<tr>
<td>17.6</td>
<td>How Will Rain Forests Behave in a Hotter and Drier Climate?</td>
<td>399</td>
</tr>
<tr>
<td>17.7</td>
<td>The Future</td>
<td>402</td>
</tr>
<tr>
<td>17.7.1</td>
<td>A Pessimistic View of the Future</td>
<td>402</td>
</tr>
<tr>
<td>17.7.2</td>
<td>An Optimistic View of the Future</td>
<td>402</td>
</tr>
<tr>
<td>References</td>
<td>403</td>
<td></td>
</tr>
<tr>
<td>Part V</td>
<td>Human Dimensions</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Detecting Intact Forests from Space: Hot Spots of Loss, Deforestation and the UNFCCC</td>
<td>411</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>411</td>
</tr>
<tr>
<td>18.2</td>
<td>Monitoring of Forest Areas from the Global to the Regional Scale using Satellite Imagery</td>
<td>411</td>
</tr>
<tr>
<td>18.3</td>
<td>Information on Global Forest Extent and Deforestation Rates</td>
<td>412</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Distribution of Forest Areas at Global Scale</td>
<td>412</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Distribution of ‘Intact Forests’: from Boreal Eurasia to the Global Scale</td>
<td>413</td>
</tr>
<tr>
<td>18.3.3</td>
<td>Hot Spots of Forest Loss</td>
<td>414</td>
</tr>
<tr>
<td>18.3.4</td>
<td>Estimates of Forest Conversion Rates in the Tropics</td>
<td>415</td>
</tr>
</tbody>
</table>
18.3.5 Monitoring of Intact Forests in Northern European Russia .. 417
18.3.6 Options for Future Monitoring .. 418
18.3.7 Processes of Deforestation and Forest Degradation .. 419
18.4 Tropical Forest Monitoring in the Context of the UNFCCC .. 421
18.4.1 Tropical Deforestation and Carbon Emissions .. 421
18.4.2 Use of the Concept of ‘Intact Forest’ in a Potential Mechanism for Reducing Emissions from Deforestation in Developing Countries .. 422
18.5 Conclusions ... 424
References .. 425

19 Impacts of Land Use on Habitat Functions of Old-Growth Forests and their Biodiversity 429
Dorothea Frank, Manfred Finckh, and Christian Wirth
19.1 Introduction ... 429
19.2 Old-Growth Forests – Habitat Function .. 430
19.2.1 Structure ... 431
19.2.2 Stand Microclimate ... 432
19.2.3 Spatiotemporal Stability .. 432
19.3 Characteristic Human Impacts on Old-Growth Forests in Different Biomes and their Impact on Habitat Characteristics, Habitat Functions and Biodiversity .. 434
19.3.1 Boreal Forests .. 435
19.3.2 Temperate Forests ... 437
19.3.3 Tropical Forests ... 441
19.4 Conclusions ... 444
References .. 445

20 Old-Growth Forests in the Context of International Environmental Agreements ... 451
Annette Freibauer
20.1 Introduction ... 451
20.2 Forests in UN Processes .. 452
20.2.1 UN Framework Convention on Climate Change .. 452
20.2.2 Convention on Biological Diversity ... 455
20.2.3 UN Forum on Forests (UNFF) .. 456
20.3 Consideration of Old-Growth Forests in UN Processes ... 457
20.3.1 Old-Growth Forests and the UN Framework Convention on Climate Change 457
20.3.2 Old-Growth Forests and the Convention on Biological Diversity .. 458
20.3.3 Old-Growth Forests and the UN Forest Focus .. 458
20.4 Potential Role of Old-Growth Forests in Future International Environmental Agreements 459
Part VI Synthesis

21 Old-Growth Forests: Function, Fate and Value – a Synthesis .. 465
Christian Wirth

21.1 Challenges in Functional Old-Growth Forest Research 465

21.2 Functional Consequences of Old-Growth Forest Structure:
 the Spatial View .. 467
 21.2.1 Tall Stature .. 467
 21.2.2 The Imprint of Aboveground Structural Complexity ... 468
 21.2.3 The Imprint of Belowground Structural Complexity ... 469
 21.2.4 Habitat Structure .. 470

21.3 Old-Growth Forests in the Context of Succession:
 the Temporal View ... 471
 21.3.1 Long-Term Trends in Tree and Stand Productivity 472
 21.3.2 Are Old-Growth Forests Carbon Neutral? 474
 21.3.3 Nutrient Dynamics 477
 21.3.4 Consequences of Successional Species Change 479
 21.3.5 Shapes of Responses 480

21.4 The Fate of Old-Growth Forests Worldwide 482
 21.4.1 Current Status of Old-Growth Forests 482
 21.4.2 Politics and the Future of Old-Growth Forests 484

21.5 Research Needs ... 485
 21.5.1 Methods ... 485
 21.5.2 Knowledge Gaps .. 486

21.6 Overall summary ... 488

References ... 490

Abbreviations and Glossary .. 493

Geographic Index .. 497

Subject Index .. 499

Taxonomic Index ... 509
Old-Growth Forests
Function, Fate and Value
Wirth, C.; Gleixner, G.; Heimann, M. (Eds.)
2009, XXVI, 512 p. 113 illus., Hardcover
ISBN: 978-3-540-92705-1