Contents

Purpose and Structure of the Dynamics of Machinery 1

1 Model Generation and Parameter Identification 5
 1.1 Classification of Calculation Models 5
 1.1.1 General Principles 5
 1.1.2 Examples .. 10
 1.2 Determination of Mass Parameters 14
 1.2.1 Overview .. 14
 1.2.2 Mass and Position of the Center of Gravity 15
 1.2.3 Moment of Inertia about an Axis 17
 1.2.4 Moment of Inertia Tensor 21
 1.3 Spring Characteristics .. 25
 1.3.1 General Context 25
 1.3.2 Machine Elements, Sub-Assemblies 29
 1.3.3 Rubber Springs 36
 1.3.4 Problems P1.1 to P1.3 38
 1.3.5 Solutions S1.1 to S1.3 40
 1.4 Damping Characteristics ... 42
 1.4.1 General Context 42
 1.4.2 Methods for Determining Characteristic Damping Parameters .. 47
 1.4.3 Empirical Damping Values 51
 1.5 Characteristic Excitation Parameters 55
 1.5.1 Periodic Excitation 55
 1.5.2 Transient Excitation 56
 1.5.3 Problems P1.4 to P1.6 62
 1.5.4 Solutions S1.4 to S1.6 63

2 Dynamics of Rigid Machines .. 67
 2.1 Introduction ... 67
 2.2 Kinematics of a Rigid Body 68
2.2.1 Coordinate Transformations ... 68
2.2.2 Kinematic Parameters .. 73
2.2.3 Kinematics of the Gimbal-Mounted Gyroscope 75
2.2.4 Problems P2.1 and P2.2 .. 76
2.2.5 Solutions S2.1 and S2.2 .. 78

2.3 Kinetics of the Rigid Body .. 82
2.3.1 Kinetic Energy and Moment of Inertia Tensor 82
2.3.2 Principles of Linear Momentum and of Angular Momentum 87
2.3.3 Kinetics of Edge Mills .. 90
2.3.4 Problems P2.3 and P2.4 .. 93
2.3.5 Solutions S2.3 and S2.4 .. 95

2.4 Kinetics of Multibody Systems ... 100
2.4.1 Mechanisms with Multiple Drives 100
2.4.2 Planar Mechanisms .. 112
2.4.3 States of Motion of a Rigid Machine 122
2.4.4 Solution of the Equations of Motion 124
2.4.5 Example: Press Drive .. 129
2.4.6 Problems P2.5 to P2.8 .. 133
2.4.7 Solutions S2.5 to S2.8 .. 136

2.5 Joint Forces and Foundation Loading 141
2.5.1 General Perspective .. 141
2.5.2 Calculating Joint Forces .. 142
2.5.3 Calculation of the Forces Acting onto the Frame 145
2.5.4 Joint Forces in the Linkage of a Processing Machine 148
2.5.5 Problems P2.9 and P2.10 .. 150
2.5.6 Solutions S2.9 and S2.10 .. 151

2.6 Methods of Mass Balancing .. 153
2.6.1 Objective ... 153
2.6.2 Counterbalancing of Rigid Rotors 153
2.6.3 Mass Balancing of Planar Mechanisms 160
2.6.4 Problems P2.11 to P2.14 .. 167
2.6.5 Solutions S2.11 to S2.14 .. 170

3 Foundation and Vibration Isolation ... 177
3.1 Introductory Remarks .. 177
3.2 Foundation Loading for Periodic Excitation 181
3.2.1 Minimal Models with One Degree of Freedom 181
3.2.2 Block Foundations .. 191
3.2.3 Foundations with Two Degrees of Freedom – Vibration Absorption .. 200
3.2.4 Example: Vibrations of an Engine-Generator System 204
3.2.5 Problems P3.1 to P3.3 .. 206
3.2.6 Solutions to Problems S3.1 to S3.3 208

3.3 Foundations under Impact Loading 211
3.3.1 Modeling Forging Hammers .. 211
5.3.1 General Perspective338
5.3.2 Straight Beam on Two Supports343
5.3.3 Estimates by Dunkerley and Neuber346
5.4 Model Generation for Rotors347
5.4.1 General Considerations347
5.4.2 Example: Grinding Spindle350
5.5 Problems P5.4 to P5.6351
5.6 Solutions S5.4 to S5.6352

6 Linear Oscillators with Multiple Degrees of Freedom355
6.1 Introduction ...355
6.2 Equations of Motion358
 6.2.1 Mass, Spring, and Compliance matrix358
 6.2.2 Examples ...363
 6.2.3 Problems P6.1 to P6.3372
 6.2.4 Solutions S6.1 to S6.3373
6.3 Free Undamped Vibrations375
 6.3.1 Natural Frequencies, Mode Shapes, Eigenforces375
 6.3.2 Orthogonality and Modal Coordinates378
 6.3.3 Initial Conditions, Initial Energy, Estimates381
 6.3.4 Examples ...383
 6.3.5 Problems P6.4 to P6.6395
 6.3.6 Solutions S6.4 to S6.6396
6.4 Structure and Parameter Changes399
 6.4.1 Rayleigh Quotient399
 6.4.2 Sensitivity of Natural Frequencies and Mode Shapes400
 6.4.3 Reduction of Degrees of Freedom405
 6.4.4 Influence of Constraints on Natural Frequencies and Mode Shapes ..407
 6.4.5 Examples of the Reduction of Degrees of Freedom411
 6.4.6 Problems P6.7 to P6.9419
 6.4.7 Solutions S6.7 to S6.9420
6.5 Forced Undamped Vibrations426
 6.5.1 General Solution426
 6.5.2 Harmonic Excitation (resonance, absorption)427
 6.5.3 Transient Excitation (Rectangular Impulse)433
 6.5.4 Examples ...437
 6.5.5 Problems P6.10 to P6.12440
 6.5.6 Solutions S6.10 to S6.12441
6.6 Damped Vibrations ..444
 6.6.1 Determination of Damping444
 6.6.2 Free Damped Vibrations445
 6.6.3 Harmonic Excitation447
 6.6.4 Periodic Excitation452
 6.6.5 Examples ..455
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.6</td>
<td>Problems P6.13 to P6.16</td>
<td>460</td>
</tr>
<tr>
<td>6.6.7</td>
<td>Solutions S6.13 to S6.16</td>
<td>460</td>
</tr>
<tr>
<td>7</td>
<td>Simple Nonlinear and Self-Excited Oscillators</td>
<td>465</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>465</td>
</tr>
<tr>
<td>7.2</td>
<td>Nonlinear Oscillators</td>
<td>468</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Undamped Free Nonlinear Oscillators</td>
<td>468</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Forced Vibrations with Harmonic Excitation</td>
<td>471</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Examples</td>
<td>476</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Problems P7.1 to P7.2</td>
<td>488</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Solutions S7.1 and S7.2</td>
<td>489</td>
</tr>
<tr>
<td>7.3</td>
<td>Self-Excited Oscillators</td>
<td>490</td>
</tr>
<tr>
<td>7.3.1</td>
<td>General Perspective</td>
<td>490</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Examples</td>
<td>491</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Problems P7.3 and P7.4</td>
<td>500</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Solutions S7.3 and S7.4</td>
<td>502</td>
</tr>
<tr>
<td>8</td>
<td>Rules for Dynamically Favorable Designs</td>
<td>505</td>
</tr>
<tr>
<td>9</td>
<td>Relations to System Dynamics and Mechatronics</td>
<td>511</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>511</td>
</tr>
<tr>
<td>9.2</td>
<td>Closed-Loop Controlled Systems</td>
<td>514</td>
</tr>
<tr>
<td>9.2.1</td>
<td>General Perspective</td>
<td>514</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Example: Influencing Frame Vibrations by a Controller</td>
<td>516</td>
</tr>
</tbody>
</table>

Symbols ... 525

References ... 531

Index .. 533
Dynamics of Machinery
Theory and Applications
Dresig, H.; Holzweißig, F.
2010, XII, 544 p. With online files/update., Softcover
ISBN: 978-3-540-89939-6