Contents

1 **Introduction** ... 1
 1.1 The Fascination of Locomotion 1
 1.2 Biologically inspired Robotics 2
 1.3 RoboCup .. 4
 1.4 Summary Remarks and a Diagram of the Book 5

2 **Mechanical Background** .. 7
 2.1 Modeling .. 7
 2.2 Kinematics of Multibody Systems 9
 2.2.1 Kinematics of Rigid Bodies 9
 2.2.2 Kinematics of Multibody Systems with Open-loop Structures 11
 2.2.3 Holonomic and Non-Holonomic Constraints 12
 2.3 Dynamics of Multibody Systems 15
 2.3.1 Synthetic Method 15
 2.3.1.1 Principle of Linear Momentum 15
 2.3.1.2 Principle of Angular Momentum 16
 2.3.2 Analytical Method 19
 2.3.2.1 D’ALEMBERT’s Principle 19
 2.3.2.2 LAGRANGE’s Equations of the 2nd Kind 20
 2.3.2.3 Multibody Systems with Additional Constraints 23
 2.3.2.4 VORONETS’ Equations 25
 2.3.2.5 APPELL’s Equations 27
 2.4 Forces Related to Locomotion 29
 2.4.1 Force of Gravity 29
 2.4.2 Spring Force 30
 2.4.3 Friction Forces 33
 2.4.3.1 General Notes 33
 2.4.3.2 Viscous Friction Force 34
 2.4.3.3 Dry Friction Force 36
 2.4.3.4 An Approach of Mathematical Friction Modeling 41
3 Mathematical Methods and Elements of Control Theory 47
 3.1 Modeling .. 47
 3.2 Analysis and Modification of the Model – the Role of an Experiment 48
 3.3 Mathematical Methods .. 48
 3.3.1 Perturbation Methods .. 48
 3.3.2 Stability of Stationary Motions 50
 3.3.3 Introduction of Dimensionless Variables and Method of Dimensions .. 55
 3.3.4 Remarks on Numerical Methods 59
 3.4 Some Aspects from Control Theory 61
 3.4.1 Motivating Example and General Formulations 61
 3.4.2 Open- and Closed-Loop Control 63
 3.4.3 Output Feedback ... 64
 3.4.3.1 Introduction .. 64
 3.4.3.2 Relative Degree .. 65
 3.4.3.3 Minimum-Phase Condition and Invariant Zeros 67
 3.4.4 Recapitulatory Example and High-Gain Control 70

4 Wheeled Locomotion Systems – Rolling 73
 4.1 Rolling - the Exclusive Engineering Idea for Locomotion 73
 4.2 Two-Wheel Planar Mobile Robot 75
 4.2.1 Two-Wheel Vehicle Model 76
 4.2.2 Kinematics ... 77
 4.2.3 Dynamics ... 78
 4.2.3.1 APPELL's Equations 79
 4.2.3.2 LAGRANGE's Equations with Multipliers 85
 4.2.3.3 VORONETS' Equations 87
 4.2.3.4 Synthetic Method – Basic Theorems of Dynamics 88
 4.2.4 Analysis of the Equations of Motion 91
 4.3 The Three-Wheel RoboCup Player “Lukas” Utilizing
 Omnidirectional Wheels ... 95
 4.3.1 Kinematics ... 95
 4.3.2 Dynamics ... 98
 4.3.3 Control of the RoboCup Player “Lukas” 102
 4.3.3.1 Velocity Control Loop 104
 4.3.3.2 Positioning “Lukas” 104
 4.3.3.3 High-Level Tasks 105
 4.4 Non-Holonomic Mobile Robot 106
 4.4.1 The Idea and Performance of the Mobile Robot 106
 4.4.2 Mechanical Model of a Planar Four-Bar Mechanism with Wheels .. 107
 4.4.3 Kinematics of the Mechanism 108
 4.4.4 Dynamics of the Mechanism 111
 4.4.5 Dynamic Simulations of the Locomotion of the Planar Four-Bar Mechanism with Wheels 116
5 Walking Machines – Walking

5.1 Human Walking and Running: History and General Remarks

5.2 Dynamic Models of Walking

5.2.1 Dynamics of Human Trunk Locomotion

5.2.2 Dynamics of Extremities

5.2.2.1 Introductory Remarks

5.2.2.2 Mathematical and Physical Pendulum

5.2.2.3 Double Pendulum

5.2.3 Simplest Integrative Model of Walking – Inverted Pendulum

5.2.3.1 Inverted Pendulum with Fixed Length

5.2.3.2 Inverted Pendulum with Variable Length

5.2.3.3 Inverted Double Pendulum

5.2.3.4 Inverted Double Pendulum with a Rigid Body

5.2.4 The Three-Body Model of Walking

5.2.4.1 Kinetic Energy of the Upper Body

5.2.4.2 Kinetic and Potential Energies of the Leg

5.2.4.3 LAGRANGE’s Equations for the Three-Body Model

5.2.5 Five-Body Model of a Walking Robot

5.2.5.1 Kinetic Energy of a Lower Leg

5.2.5.2 Potential Energy of the System and the Generalized Forces

5.2.5.3 The Equations of Motion

5.3 Robustness and Adaptivity

5.4 Generalization – Scaling

6 Worm-like Locomotion Systems – Crawling

6.1 Modeling Worm-Like Locomotion Systems (WLLS)

6.2 Straight Discrete Worms with Contact via Spikes, [137]

6.2.1 Kinematics

6.2.2 Dynamics

6.2.3 Geometric Interpretation of the Results

6.3 Straight Discrete Worms with Contact via Dry Friction

6.4 Worm-Like Locomotion based on Friction with Anisotropic Friction Coefficients

6.4.1 System of Two Mass Points and a Kinematic Drive

6.4.2 System of Two Mass Points with a Linear Elastic Element

6.4.2.1 Mechanical Model and Equations with a Linear Elastic Element

6.4.2.2 Application of the Averaging Method

6.4.2.3 Stationary Regime

6.4.2.4 Conditions of Stability
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.3</td>
<td>System with Two Mass Points and a Nonlinear Elastic Element</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>6.4.3.1 Equation of Motion</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>6.4.3.2 Stationary Regime and Conditions of Stability</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>6.4.3.3 Discussion of Results and Graphical Illustrations</td>
<td>188</td>
</tr>
<tr>
<td>6.4.4</td>
<td>System of n Mass Points with Kinematic Constraints</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>6.4.4.1 Mechanical Model and Equations of Motion</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>6.4.4.2 Asymptotic Approximation</td>
<td>193</td>
</tr>
<tr>
<td>6.5</td>
<td>Worm-like Locomotion Based on Periodic Change of Normal Forces</td>
<td>200</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Introductory Remarks</td>
<td>200</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Vibration-Driven Robot with One Moveable Internal Mass</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>6.5.2.1 Mechanical Model and Equation of Motion</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>6.5.2.2 Steady-State Motion of the System in the Case of Small Friction</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>6.5.2.3 Vibration-Driven Robot with One Unbalance Exciter</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>6.5.2.4 Analysis of the Results</td>
<td>211</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Vibration-Driven Robot with Two Unbalance Exciters</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>6.5.3.1 Mechanical Model and Equations of Motion</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>6.5.3.2 Application of the Method of Averaging</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>6.5.3.3 Numerical Example</td>
<td>222</td>
</tr>
<tr>
<td>6.6</td>
<td>Worm-like Locomotion Based on Viscous Friction</td>
<td>226</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Two Mass Points Subjected to a Kinematic Constraint</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>6.6.1.1 Statement of the Problem</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>6.6.1.2 Asymptotic Approximation</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>6.6.1.3 Steady-State Solution</td>
<td>229</td>
</tr>
<tr>
<td>6.6.2</td>
<td>A Rigid Body Acted upon by a Periodic Force</td>
<td>232</td>
</tr>
<tr>
<td>6.6.3</td>
<td>A Rigid Body with a Moving Internal Mass</td>
<td>234</td>
</tr>
<tr>
<td>6.6.4</td>
<td>Two Bodies Connected by a Spring</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>6.6.4.1 Statement of the Problem</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>6.6.4.2 Asymptotic Approximation</td>
<td>236</td>
</tr>
<tr>
<td>6.6.5</td>
<td>System of Three Mass Points with Kinematic Constraints</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>6.6.5.1 Equations of Motion</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>6.6.5.2 Smooth Control</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>6.6.5.3 Motion with Viscous Friction</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>6.6.5.4 Comparison between Viscous and Dry Friction</td>
<td>244</td>
</tr>
<tr>
<td>7</td>
<td>Adaptive Control Approach to Worm-like Locomotion Systems</td>
<td>247</td>
</tr>
<tr>
<td>7.1</td>
<td>Introductory Remarks</td>
<td>247</td>
</tr>
<tr>
<td>7.2</td>
<td>The Worm-like Locomotion System as a Dynamic Control System</td>
<td>249</td>
</tr>
<tr>
<td>7.3</td>
<td>Adaptive High-Gain Control</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>7.3.1 Motivation and History</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>7.3.2 Control Objective and Adaptation Law</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>7.3.3 Feedback and Controllers for Systems with Different Relative Degrees</td>
<td>255</td>
</tr>
</tbody>
</table>
7.4 Simulations ..256
 7.4.1 Simulation using a 2-D COULOMB Model257
 7.4.1.1 Simulation Data257
 7.4.1.2 Tracking of a Time-Shifted Sine Signal257
 7.4.1.3 Tracking an “Optimal” Kinematic Gait259
 7.4.2 Simulation using a 3-D COULOMB Model261
 7.4.2.1 Simulation Data261
 7.4.2.2 Tracking of an “Optimal” Kinematic Gait261
7.5 3-D Animations ...263

8 Prototypes of Worm-Like Locomotion Systems265
 8.1 Worm-like Locomotion System with Two Stepping Motors265
 8.2 Locomotion Systems with One Unbalance Rotor System267
 8.3 Locomotion Systems with Two Unbalance Rotors268
 8.4 Vibration-Driven Robot – “MINCH Robot”269
 8.5 Miniaturized Vibration-Driven Robot with a Piezo Actuator ...273
 8.6 Worm-like Locomotion System Based on Smart Materials274

References ..279

Index ...287
Mechanics of Terrestrial Locomotion
With a Focus on Non-pedal Motion Systems
Zimmermann, K.; Zeidis, I.; Behn, C.
2009, XX, 289 p. 205 illus., Hardcover
ISBN: 978-3-540-88840-6