Contents

Chapter 1 Wind-Blown Sand Environment 1
 1.1 Desert and Desertification ... 1
 1.1.1 Desert ... 1
 1.1.2 Desertification ... 4
 1.2 Harms of Wind-Blown Sand Environment 6
 1.2.1 Wind Erosion ... 7
 1.2.2 Sand (Dust) Storm ... 8
 1.3 Examples: Dunhuang, Minqin, Maqu 12
 1.3.1 Dunhuang ... 12
 1.3.2 Minqin ... 14
 1.3.3 Maqu ... 16

Chapter 2 Flows of the Near-Surface Boundary Layer 19
 2.1 An Introduction to Fluid Mechanics 19
 2.1.1 Viscosity of a Fluid ... 20
 2.1.2 Properties of Flow ... 20
 2.2 Basic Equations of Fluid Mechanics 22
 2.2.1 Conservation of Mass (Continuity Equation) 23
 2.2.2 Conservation of Momentum 23
 2.2.3 Conservation of Energy 24
 2.2.4 Basic Equations of Turbulence 25
 2.2.5 Models of Turbulence .. 25
 2.2.6 Approaches of Turbulent Numerical Simulation 27
 2.3 Basic Characteristics of the Atmospheric Boundary Layer 28
 2.4 Observations of the Atmosphere Boundary Layer 32
 2.5 Basic Equations of the Atmospheric Boundary Layer 38
 2.5.1 Basic Equations .. 38
 2.5.2 Aerodynamic Roughness 41
 2.5.3 Characteristics of the Flow Field on the Wind-Blown Sand Boundary Layer .. 42
 2.5.4 Effect of Sand Dunes on the Flow Field 44
 2.6 Wind Gusts near the Earth’s Surface 46
 2.6.1 Analysis of the Wind Gusts 47
Chapter 3 Sand Motion near the Sand Bed Surface 61
 3.1 Threshold Wind Velocity for Sand Motion 62
 3.1.1 Mechanism of the Entrainment of Sand Particles 62
 3.1.2 Threshold Wind Velocity of Sand Motion 63
 3.1.3 Factors Affecting the Threshold Wind Velocity 65
 3.2 Experimental Research on the Lift-off of Sand Particles 67
 3.2.1 Experiments on Particle-Bed Collision with ‘Artificial’ Sand ... 67
 3.2.2 Measurements of the Linear Velocities of Lift-off Particles 68
 3.2.3 Measurement of the Angular Velocities of Saltating Particles ... 72
 3.3 Stochastic Model of Particle-Bed Collision 76
 3.3.1 Stochastic Model .. 76
 3.3.2 Soft-Particle Approach for Collision Process 79
 3.3.3 Hard-Particle Approach for Collision Process 81
 3.3.4 Analytical Solution of Lift-off Velocity 84
 3.4 Probability Distribution of Lift-off Velocities 86
 3.5 Splash Function ... 94
 3.5.1 Splash Function for ‘Uniform’ Sands 94
 3.5.2 Splash Function for ‘Mixed’ Sands 98

Chapter 4 Wind-Blown Sand Electrification 105
 4.1 Charged Sand Particles and their Charging Mechanisms 106
 4.1.1 Observations and Measurements 106
 4.1.2 Charging Mechanisms of Sand Particles 109
 4.2 Measurements of Wind-Blown Sand Electric Field 111
 4.2.1 Atmospheric Electric Field ... 111
 4.2.2 Field Observation of Wind-Blown Sand Electric Field 112
 4.2.3 Wind Tunnel Measurement of Wind-Blown Sand Electric Field ... 115
 4.3 Theoretical Calculation of Wind-Blown Sand Electric Field 120
 4.3.1 Electric Field Due to Sand Particles Moving in Air 121
 4.3.2 Electric Field Due to Sand Particles in Sand Bed 122
 4.3.3 Total Electric Field Due to Charged Sand Particles in Wind-Blown Sand Flux ... 123
 4.4 Effects of Charged Sand Particles .. 126
 4.4.1 Effects on the Entrainment of Sand Particles’ 126
 4.4.2 Effects on Electromagnetic Wave Propagation 128
Chapter 5 Wind-Blown Sand Flux and its Prediction

5.1 Forces on Saltating Sand Particles
5.2 Sand Saltation
 5.2.1 The Effect of Wind-Blown Sand Electric Field on Sand Saltation
 5.2.2 The Effects of Particle’s Mid-Air Collisions on Sand Saltation Trajectories
 5.2.3 Saltation Trajectory and Saltation Activity in a Fluctuating Wind Field
 5.2.4 The Criterion of Saltation and Suspension
5.3 Experiments and Observations on Sand Transport Rate
5.4 Theoretical Simulations on the Evolution of Wind-Blown Sand Flux
5.5 Dust Devil

Chapter 6 Aeolian Geomorphology and its Simulation – Aeolian Sand Ripples

6.1 Observations of Aeolian Sand Ripples
 6.1.1 The Basic Characteristics of Aeolian Sand Ripples
 6.1.2 The Formation Mechanism of Aeolian Sand Ripples
6.2 Continuous Models for Aeolian Sand Ripples
 6.2.1 The Anderson’s Continuous Model
 6.2.2 The Granular Surface Flow Model
6.3 Discrete Models for Aeolian Sand Ripples
 6.3.1 Cellular Automata Model (Anderson-Bunas Discrete Model)
 6.3.2 Discrete Element Model (Landry-Werner Model)
 6.3.3 Coupled Mapping Lattice Model (Nishimori-Ouchi Model)
6.4 Discrete Particle Tracing Method (DPTM) Model
 6.4.1 Basic Method
 6.4.2 Major Simulation Results

Chapter 7 Aeolian Geomorphology and its Simulation – Aeolian Sand Dunes

7.1 Aeolian Sand Dunes and Observation Results
 7.1.1 Classification of Sand Dunes
 7.1.2 The Observation of Sand Dune Migration
 7.1.3 Observation on the Dynamical Behavior of Sand Dunes
 7.1.4 Influence Factors
7.2 Continuum Sand Dune Model
7.3 Simulation of Sand Dune Field ..235
 7.3.1 Coupled Mapping Lattice Method...235
 7.3.2 Cellular Automaton Method..236
7.4 Numerical Simulation of Sand Dune Field..............................238
 7.4.1 Discrete Numerical Simulation of Sand Dune Field238
 7.4.2 Simulation Results...243

Chapter 8 Mechanical Analysis on the Efficiency of Sand
Prevention Methods...261
 8.1 Sand Fence..262
 8.2 Straw Checkerboard Barriers..268
 8.3 The Mechanical Properties of Crust...272
 8.3.1 The Survey on the Mechanical Properties of Crust..............274
 8.3.2 The Destruction of Saltating Sand to Crust..........................280

References...287

Author Index ..301

Subject Index..305
Mechanics of Wind-blown Sand Movements
Zheng, X.
2009, XX, 309 p. 163 illus., 58 illus. in color., Hardcover
ISBN: 978-3-540-88253-4