Part I Collective Risk Models

1. **The Basic Model** ... 3

2. **Models for the Claim Number Process** 7
 2.1 **The Poisson Process** .. 7
 2.1.1 The Homogeneous Poisson Process, the Intensity
 Function, the Cramér-Lundberg Model 9
 2.1.2 The Markov Property 12
 2.1.3 Relations Between the Homogeneous and the
 Inhomogeneous Poisson Process 14
 2.1.4 The Homogeneous Poisson Process as a Renewal Process 16
 2.1.5 The Distribution of the Inter-Arrival Times 20
 2.1.6 The Order Statistics Property 22
 2.1.7 A Discussion of the Arrival Times of the Danish Fire
 Insurance Data 1980-1990 32
 2.1.8 An Informal Discussion of Transformed and
 Generalized Poisson Processes 35
 Exercises .. 46
 2.2 **The Renewal Process** 53
 2.2.1 Basic Properties .. 53
 2.2.2 An Informal Discussion of Renewal Theory 60
 Exercises .. 65
 2.3 **The Mixed Poisson Process** 66
 Exercises .. 69
3 The Total Claim Amount .. 71
 3.1 The Order of Magnitude of the Total Claim Amount 72
 3.1.1 The Mean and the Variance in the Renewal Model 73
 3.1.2 The Asymptotic Behavior in the Renewal Model 74
 3.1.3 Classical Premium Calculation Principles 78
 Exercises .. 80
 3.2 Claim Size Distributions ... 82
 3.2.1 An Exploratory Statistical Analysis: QQ-Plots 82
 3.2.2 A Preliminary Discussion of Heavy- and Light-Tailed
 Distributions .. 86
 3.2.3 An Exploratory Statistical Analysis: Mean Excess Plots 88
 3.2.4 Standard Claim Size Distributions and Their Properties 94
 3.2.5 Regularly Varying Claim Sizes and Their Aggregation ... 99
 3.2.6 Subexponential Distributions 103
 Exercises ..106
 3.3 The Distribution of the Total Claim Amount109
 3.3.1 Mixture Distributions 110
 3.3.2 Space-Time Decomposition of a Compound Poisson
 Process ...115
 3.3.3 An Exact Numerical Procedure for Calculating the
 Total Claim Amount Distribution 120
 3.3.4 Approximation to the Distribution of the Total Claim
 Amount Using the Central Limit Theorem 125
 3.3.5 Approximation to the Distribution of the Total Claim
 Amount by Monte Carlo Techniques 130
 Exercises ..138
 3.4 Reinsurance Treaties ...142
 Exercises ..149

4 Ruin Theory ...151
 4.1 Risk Process, Ruin Probability and Net Profit Condition151
 Exercises ..156
 4.2 Bounds for the Ruin Probability157
 4.2.1 Lundberg’s Inequality157
 4.2.2 Exact Asymptotics for the Ruin Probability: the Small
 Claim Case ...162
 4.2.3 The Representation of the Ruin Probability as a
 Compound Geometric Probability172
 4.2.4 Exact Asymptotics for the Ruin Probability: the Large
 Claim Case ...174
 Exercises ..177
Part II Experience Rating

5 Bayes Estimation ... 187
 5.1 The Heterogeneity Model 187
 5.2 Bayes Estimation in the Heterogeneity Model 189
 Exercises .. 195

6 Linear Bayes Estimation 199
 6.1 An Excursion to Minimum Linear Risk Estimation 200
 6.2 The Bühlmann Model 204
 6.3 Linear Bayes Estimation in the Bühlmann Model 206
 6.4 The Bühlmann-Straub Model 209
 Exercises .. 211

Part III A Point Process Approach to Collective Risk Theory

7 The General Poisson Process 215
 7.1 The Notion of a Point Process 215
 7.1.1 Definition and First Examples 215
 7.1.2 Distribution and Laplace Functional 222
 Exercises .. 224
 7.2 Poisson Random Measures 226
 7.2.1 Definition and First Examples 227
 7.2.2 Laplace Functional and Non-Negative Poisson Integrals 232
 7.2.3 Properties of General Poisson Integrals 236
 Exercises .. 242
 7.3 Construction of New Poisson Random Measures from Given
 Poisson Random Measures 244
 7.3.1 Transformation of the Points of a Poisson Random
 Measure .. 244
 7.3.2 Marked Poisson Random Measures 246
 7.3.3 The Cramér-Lundberg and Related Models as Marked
 Poisson Random Measures 249
 7.3.4 Aggregating Poisson Random Measures 254
 Exercises .. 256

8 Poisson Random Measures in Collective Risk Theory 259
 8.1 Decomposition of the Time-Claim Size Space 259
 8.1.1 Decomposition by Claim Size 259
 8.1.2 Decomposition by Year of Occurrence 261
 8.1.3 Decomposition by Year of Reporting 263
 8.1.4 Effects of Dependence Between Delay in Reporting
 Time and Claim Size 264
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.5</td>
<td>Effects of Inflation and Interest</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>267</td>
</tr>
<tr>
<td>8.2</td>
<td>A General Model with Delay in Reporting and Settlement of Claim Payments</td>
<td>268</td>
</tr>
<tr>
<td>8.2.1</td>
<td>The Basic Model and the Basic Decomposition of Time-Claim Size Space</td>
<td>268</td>
</tr>
<tr>
<td>8.2.2</td>
<td>The Basic Decomposition of the Claim Number Process</td>
<td>271</td>
</tr>
<tr>
<td>8.2.3</td>
<td>The Basic Decomposition of the Total Claim Amount</td>
<td>273</td>
</tr>
<tr>
<td>8.2.4</td>
<td>An Excursion to Teletraffic and Long Memory: The Stationary IBNR Claim Number Process</td>
<td>278</td>
</tr>
<tr>
<td>8.2.5</td>
<td>A Critique of the Basic Model</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>286</td>
</tr>
<tr>
<td>9</td>
<td>Weak Convergence of Point Processes</td>
<td>291</td>
</tr>
<tr>
<td>9.1</td>
<td>Definition and Basic Examples</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td>Convergence of the Finite-Dimensional Distributions</td>
<td>292</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Convergence of Laplace Functionals</td>
<td>294</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>299</td>
</tr>
<tr>
<td>9.2</td>
<td>Point Processes of Exceedances and Extremes</td>
<td>300</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Convergence of the Point Processes of Exceedances</td>
<td>300</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Convergence in Distribution of Maxima and Order Statistics Under Affine Transformations</td>
<td>305</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Maximum Domains of Attraction</td>
<td>309</td>
</tr>
<tr>
<td>9.2.4</td>
<td>The Point Process of Exceedances at the Times of a Renewal Process</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>321</td>
</tr>
<tr>
<td>9.3</td>
<td>Asymptotic Theory for the Reinsurance Treaties of Extreme Value Type</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>331</td>
</tr>
<tr>
<td>Part IV</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>An Excursion to Lévy Processes</td>
<td>335</td>
</tr>
<tr>
<td>10.1</td>
<td>Definition and First Examples of Lévy Processes</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>338</td>
</tr>
<tr>
<td>10.2</td>
<td>Some Basic Properties of Lévy Processes</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>340</td>
</tr>
<tr>
<td>10.3</td>
<td>Infinite Divisibility: The Lévy-Khintchine Formula</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>347</td>
</tr>
<tr>
<td>10.4</td>
<td>The Lévy-Itô Representation of a Lévy Process</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>355</td>
</tr>
<tr>
<td>10.5</td>
<td>Some Special Lévy Processes</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>361</td>
</tr>
</tbody>
</table>
11 Cluster Point Processes ... 363
 11.1 The General Cluster Process 363
 11.2 The Chain Ladder Method 365
 11.2.1 The Chain Ladder Model 365
 11.2.2 Mack’s Model ... 366
 11.2.3 Some Asymptotic Results in the Chain Ladder Model . 369
 11.2.4 Moments of the Chain Ladder Estimators 372
 11.2.5 Prediction in Mack’s Model 376
 Exercises ... 381
 11.3 An Informal Discussion of a Cluster Model with Poisson
 Arrivals .. 386
 11.3.1 Specification of the Model 386
 11.3.2 An Analysis of the First and Second Moments 389
 11.3.3 A Model when Clusters are Poisson Processes 394
 Exercises ... 402

References ... 405

Index ... 413

List of Abbreviations and Symbols 429
Non-Life Insurance Mathematics
An Introduction with the Poisson Process
Mikosch, Th.
2009, XV, 432 p. 55 illus., Softcover
ISBN: 978-3-540-88232-9