Part I Three-Dimensional Free-Radical Polymerization. Cross-Linked Polymers

1 Microheterogeneous Mechanism of Three-Dimensional Free-Radical Polymerization 3
 1.1 Microheterogeneous Model of Polymerization Process 4
 1.2 Polymerization Process: Stages of Formation of the Microheterogeneous Structure for Cross-Linked Polymers ... 5
 1.2.1 Formation of Polymer Grains at the Initial Stage of Polymerization ... 5
 1.2.2 Growth of Polymer Grains During Polymerization 7
 1.2.3 Accretion of Polymer Grains at the Final Stages of Polymerization ... 12
 1.3 Structural and Physical Processes Taking Place During Three-Dimensional Free-Radical Polymerization 17
 1.3.1 Microsyneresis of Liquid Components in Reaction Medium 17
 1.3.2 Microredistribution of Substances Dissolved in Liquid Components ... 20
 1.3.3 Local Glass Transition of Highly Cross-Linked Micro-Volumes of Polymer 23
 1.4 Microheterogeneous Structure of Cross-Linked Polymers 25
 1.4.1 Interlayers Between Polymer Grains 27
 1.4.2 Polymer Grains 30
 References ... 31

2 Kinetic Features of Three-Dimensional Free-Radical Polymerization 33
 2.1 Kinetic Features of Individual Stages of Polymerization 34
 2.1.1 Initial Stage of Polymerization 34
 2.1.2 Stages of Auto-Acceleration and Auto-Deceleration 41
 2.2 Inhibited Polymerization .. 46
 2.3 Polymerization in Solutions .. 51
 2.4 Polymerization in Films Under the Conditions of Oxygen Diffusion 54
2.4.1 Vinyl Compounds ... 55
2.4.2 Allyl Compounds ... 66

2.5 Three-Dimensional Free-Radical Polymerization as a Tool for Macromolecular Design of Cross-Linked Polymers 75
References .. 78

3 Living Chain Three-Dimensional Radical Polymerization 81
3.1 Living Chains in Free-Radical Polymerization 82
3.2 Implementation of Living Chains Conditions in Three-Dimensional Free-Radical Polymerization 86
3.2.1 Copolymerization of Styrene with Dimethacrylates in the Presence of Alkoxyamines 87
3.2.2 Polymerization of Tri(Ethylene Glycol) Dimethacrylate (tEGdMA) in the Presence of Complex CuBr$_2$ with Tetr methyl-Tiuramdisulfide ... 93
3.2.3 Polymerization of Dimethacrylates of Poly(Ethylene Glycol)s in the Presence of Complex CuBr with Organic Ligands 97
3.3 Living Chain Three-Dimensional Free-Radical Polymerization as a Tool for Macromolecular Design of Cross-Linked Polymers 99
References .. 109

4 Kinetic Features of Three-Dimensional Free-Radical Copolymerization ... 111
4.1 Kinetic Features of Three-Dimensional Copolymerization of Oligomer and Vinyl Monomers 111
4.2 Variation of Copolymer Composition During Three-Dimensional Free-Radical Copolymerization of Oligomers and Vinyl Monomer . 118
References .. 127

5 Critical Conversion (Gel Point) in Three-Dimensional Free-Radical Polymerization .. 129
5.1 Inapplicability of Known Critical Conversion Calculation Methods to Three-Dimensional Free-Radical Polymerization 131
5.2 Novel Approach to Calculating Critical Conversion in Three-Dimensional Free-Radical Polymerization 133
5.3 Results of Critical Conversion Calculation for Different Cases of Three-Dimensional Free-Radical Polymerization 136
 5.3.1 Living Chains Three-Dimensional Polymerization and Copolymerization (Without Chain Termination) 136
 5.3.2 Three-Dimensional Polymerization and Copolymerization with Quadratic or Linear Chain Termination 143
 5.3.3 Three-Dimensional Polymerization with “Pendent” Double Bonds Taken into Account (Chain Termination by Disproportionation) 145
5.3.4 Summary of Results of Theoretical Calculations for Critical Conversion 150

5.4 Comparison of Results of Theoretical Calculations for Critical Conversion with Experimental Data 152

5.4.1 Inhibited Polymerization of Dimethacrylates 152

5.4.2 Copolymerization of Divinyl Benzene (m-DVB) with Styrene 154

References .. 155

6 Properties of Cross-Linked Polymers and Copolymers 157

6.1 Cross-Linked Poly(acrylates). Physical and Mechanical Properties 157

6.1.1 Influence of Chemical Structure of Oligomers upon Physical and Mechanical Properties of Cross-Linked Poly(acrylates) .. 158

6.1.2 Influence of Physical Network Density upon Physical and Mechanical Properties of Cross-Linked Poly(acrylates) 166

6.2 Cross-Linked Copolymers. Physical and Mechanical Properties 172

6.2.1 Mechanism of Copolymers Transition into Forced-Elastic State 172

6.2.2 Influence of Cyclization on Physical and Mechanical Properties of Copolymers 181

6.3 Cross-Linked Copolymers. Thermo-Mechanical Properties 185

6.3.1 Mechanism of Copolymers Transition into High-Elastic State 185

6.3.2 Comparison of Transitions into High-Elastic State with those into Forced-Elastic State 193

6.4 Diffusion-Sorption Properties of Copolymers 195

References .. 199

Part II Three-Dimensional Free-Radical Polymerization. Hyper-Branched Polymers

7 Synthesis of Hyper-Branched Polymers 203

7.1 Classification of Reactions for Hyper-Branched Polymer Synthesis .. 203

7.2 Synthesis of Hyper-Branched Polymers Via Three-Dimensional Free-Radical (Co)polymerization with Regulation of Polymer Chain Length .. 205

7.2.1 Regulation of Chain Length Through Initiation Rate Variation 206

7.2.2 Regulation of Chain Length by Chain Transfer Agents and Chain Transfer Catalysts 211

7.2.3 Regulation of Chain Length Through the Use of Intrachain Reactions of Chain Carrier Radicals 226

7.2.4 Regulation of Chain Length Through the Use of Molecular Oxygen as an Inhibitor 230
7.3 Synthesis of Hyper-Branched Polymers Via Living Chains
 Free-Radical Three-Dimensional Polymerization 231
7.3.1 Living Chains Free-Radical Three-Dimensional
 Polymerization as Reaction for Hyper-Branched
 Polymers Synthesis ... 231
7.3.2 Living Chains Polymerization of Vinyl Monomers
 with Diethylidithiocarbamate Groups 233
References ... 239

8 Properties and Application of Hyper-Branched Polymers 243
8.1 “Structure–Property” Relationship and Purposeful
 Generation of Hyper-Branched Polymer Properties
 That Are in Demand in Practice 244
8.2 Hyper-Branched Polymers as Modifiers of Polymeric Materials . 248
8.3 Major Fields for Hyper-Branched Polymers Application 250
8.4 HBP: Main Achievements and Problems to Be Solved Without
 Delay .. 253
References ... 254

9 Methods for Studying Three-Dimensional Free-Radical
 Polymerization and Cross-Linked Polymers 257
9.1 Calorimetry ... 257
9.2 IR Spectroscopy ... 258
9.3 Other Methods of Kinetic Measurements 259
9.4 Light Scattering .. 260
9.5 EPR .. 260
 9.5.1 Studying the Kinetics of Free-Radical Accumulation
 in Nonstationary Mode 260
 9.5.2 Studying the Kinetics of Decay of Accumulated Free
 Radicals .. 261
 9.5.3 Method of Synchronous Comparison of Continuously
 Recorded Kinetic Curves \[R^* = f_1(t) \text{ and } W = f_2(t) \] 262
 9.5.4 Structural and Physical Studies Using EPR 262
9.6 NMR .. 263
9.7 Physicomechanical and Thermo-Mechanical Methods 263
9.8 Volumetric Method ... 264
9.9 Complex Methods ... 264
References ... 265

Index .. 267
Three-Dimensional Free-Radical Polymerization
Cross-Linked and Hyper-Branched Polymers
Korolyov, G.V.; Mogilevich, M.
2009, XVI, 272 p., Hardcover
ISBN: 978-3-540-87566-6