4 Limits of Computability or Why Do There Exist Tasks That Cannot Be Solved Automatically by Computers .. 117
 4.1 Aim .. 117
 4.2 How Many Programs Exist? 118
 4.3 YES or NO, That Is the Question......................... 125
 4.4 Reduction Method .. 133
 4.5 Summary .. 155

5 Complexity Theory or What to Do When the Energy of the Universe Doesn’t Suffice for Performing a Computation? 161
 5.1 Introduction to Complexity Theory 161
 5.2 How to Measure Computational Complexity? 163
 5.3 Why Is the Complexity Measurement Useful? 169
 5.4 Limits of Tractability ... 174
 5.5 How Do We Recognize a Hard Problem? 178
 5.6 Help, I Have a Hard Problem 190
 5.7 Summary .. 195

6 Randomness in Nature and as a Source of Efficiency in Algorithmics 201
 6.1 Aims ... 201
 6.2 Does True Randomness Exist? 203
 6.3 Abundant Witnesses Are Useful 210
 6.4 High Reliabilities ... 228
 6.5 What Are Our Main Discoveries Here? 234

7 Cryptography, or How to Transform Drawbacks into Advantages 239
 7.1 A Magical Science of the Present Time 239
 7.2 Prehistory of Cryptography 241
 7.3 When Is a Cryptosystem Secure? 246
 7.4 Symmetric Cryptosystems 249
 7.5 How to Agree on a Secret in Public Gossip? 253
 7.6 Public-Key Cryptosystems 260
 7.7 Milestones of Cryptography 272
8 Computing with DNA Molecules, or Biological Computer Technology on the Horizon 277
 8.1 The Story So Far .. 277
 8.2 How to Transform a Chemical Lab into a DNA Computer 282
 8.3 Adleman’s Experiment 288
 8.4 The Future of DNA Computing 296

9 Quantum Computers, or Computing in the Wonderland of Particles 299
 9.1 Prehistory ... 299
 9.2 The Wonderland of Quantum Mechanics 302
 9.3 How to Compute in the World of Particles? 309
 9.4 The Future of Quantum Computing 320

10 How to Make Good Decisions for an Unknown Future or How to Foil an Adversary 325
 10.1 What Do We Want to Discover Here? 325
 10.2 Quality Measurement of Online Algorithms 327
 10.3 A Randomized Online Strategy 338
 10.4 Summary ... 356

References ... 359

Index .. 361
Algorithmic Adventures
From Knowledge to Magic
Hromkovic, J.
2009, XIII, 363 p., Hardcover
ISBN: 978-3-540-85985-7