Contents

1 Introduction ... 1
 1.1 Development of Welding and Manufacturing Technology 1
 1.2 Sensing Technology for Arc Welding Process 3
 1.3 Visual Sensing Technology for Arc Welding Process 3
 1.3.1 Active Visual Sensing 4
 1.3.2 Passive Direct Visual Sensing 6
 1.3.3 Image Processing Methods 9
 1.4 Modeling Methods for Arc Welding Process 13
 1.4.1 Analytical Model 13
 1.4.2 Identification, Fuzzy Logic and Neural Network Models ... 14
 1.4.3 Rough Set Model 18
 1.5 Intelligent Control Strategies for Arc Welding Process 19
 1.6 The Organized Framework of the Book 23
References .. 23

 2.1 Description of the Real-Time Control Systems with Visual Sensing of Weld Pool for the Pulsed GTAW Process 35
 2.2 The Visual Sensing System and Images of Weld Pool During Low Carbon Steel Pulsed GTAW 38
 2.2.1 Analysis of the Sensing Conditions for Low Carbon Steel 38
 2.2.2 Capturing Simultaneous Images of Weld Pool in a Frame from Two Directions 38
 2.2.3 Capturing Simultaneous Images of Weld Pool in a Frame from Three Directions 43
 2.3 The Visual Sensing System and Images of Weld Pool During Aluminium Alloy Pulsed GTAW 44
 2.3.1 Analysis of the Sensing Conditions for Aluminium Alloy 44
 2.3.2 Capturing Simultaneous Images of Weld Pool in a Frame from Two Directions 47
 2.3.3 Capturing Simultaneous Images of Weld Pool in a Frame from Three Directions 51
3 Information Acquisition of Arc Welding Process 57
 3.1 Acquiring Two Dimensional Characteristics from Weld Pool
 Image During Pulsed GTAW .. 57
 3.1.1 Definition of Weld Pool Shape Parameters 58
 3.1.2 The Processing and Characteristic Computing of Low
 Carbon Steel Weld Pool Images 59
 3.1.3 The Processing and Characteristic Computing of
 Aluminium Alloy Weld Pool Image 69
 3.2 Acquiring Three Dimensional Characteristics from Monocular
 Image of Weld Pool During Pulsed GTAW 78
 3.2.1 Definition of Topside Weld Pool Height 78
 3.2.2 Extracting Surface Height of the Weld Pool from Arc
 Reflection Position ... 79
 3.2.3 Extracting Surface Height of the Weld Pool by Shape
 from Shading .. 81
 3.3 The Software of Image Processing and Characteristic Extracting
 of Weld Pool During Pulsed GTAW 101
 3.3.1 The Framework and Function of the Software System 101
 3.3.2 The Directions for Using the Software System 102
 3.4 The Chapter Conclusion Remarks 110

4 Modeling Methods of Weld Pool Dynamics During Pulsed GTAW 113
 4.1 Analysis on Welding Dynamics 113
 4.1.1 Transient Responses with Pulse Duty Ratio Step Changes 115
 4.1.2 Transient Responses with Welding Velocity Step Changes 116
 4.1.3 Transient Responses with Peak Current Step Changes 116
 4.1.4 Transient Responses with Wire Feeding Velocity
 Step Changes .. 117
 4.2 Identification Models of Weld Pool Dynamics 118
 4.2.1 Linear Stochastic Models of Aluminium Alloy Weld
 Pool Dynamics .. 118
 4.2.2 Nonlinear Models of Low Carbon Steel Weld
 Pool Dynamics ... 123
 4.3 Artificial Neural Network Models of Weld Pool Dynamics 126
 4.3.1 BWHDNNM Model for Predicting Backside Width
 and Topside Height During Butt Pulsed GTAW 127
 4.3.2 BNNM Model for Predicting Backside Width During Butt
 Pulsed GTAW ... 130
 4.3.3 BHDNNM Model for Predicting Backside Width
 and Topside Height During Butt Pulsed GTAW
 Based on Three-Dimensional Image Processing 131
 4.3.4 SSNNM Model During Butt Pulsed GTAW 133
4.4 Knowledge Models of Weld Pool Dynamical Process137
 4.4.1 Extraction of Fuzzy Rules Models of Weld Pool Dynamical Process ..137
 4.4.2 Knowledge Models Based-on Rough Sets for Weld Pool Dynamical Process Based on Classic Theory139
 4.4.3 A Variable Precision Rough Set Based Modeling Method for Pulsed GTAW150
4.5 The Chapter Conclusion Remarks ..161
References ..161

5 Intelligent Control Strategies for Arc Welding Process163
 5.1 Open-Loop Experiments ..163
 5.2 PID Controller for Weld Pool Dynamics During Pulsed GTAW165
 5.2.1 PID Control Algorithm ...165
 5.2.2 Welding Experiments with PID Controller166
 5.3 PSD Controller for Weld Pool Dynamics During Pulsed GTAW ...168
 5.3.1 PSD Controller Algorithms ..168
 5.3.2 Welding Experiments with PSD Controller170
 5.4 NN Self-Learning Controller for Dynamical Weld Pool During Pulsed GTAW ...172
 5.4.1 FNNC Control Algorithm ..173
 5.4.2 Experiment of FNNC Control Scheme178
 5.5 Model-Free Adaptive Controller for Arc Welding Dynamics182
 5.5.1 Preliminary of Model-Free Adaptive Control (MFC)184
 5.5.2 The Improved Model-Free Adaptive Control with G Function Fuzzy Reasoning Regulation186
 5.5.3 Realization and Simulation of Improved Control Algorithm 188
 5.5.4 Controlled Experiments on Pulsed GTAW Process190
 5.6 Composite Intelligent Controller for Weld Pool Dynamics During Pulsed GTAW ...194
 5.6.1 FNNC- Expert System Controller for Low Carbon Steel During Butt Welding195
 5.6.2 FNNC- Forward Feed Controller for Low Carbon Steel During Butt Welding with Gap Variations200
 5.6.3 Compensated Adaptive- Fuzzy Controller for Aluminium Alloy During Butt Welding205
 5.6.4 Adaptive-Fuzzy Controller Based on Nonlinear Model for Low Carbon Steel During Butt Welding with Wire Filler 210
5.7 The Chapter Conclusion Remarks ..218
References ..220

6 Real-Time Control of Weld Pool Dynamics During Robotic GTAW . 221
 6.1 Real-Time Control of Low Carbon Steel Weld Pool Dynamics by PID Controller During Robotic Pulsed GTAW221
6.1.1 Welding Robot Systems with Vision Sensing and Real-Time Control of Arc Weld Dynamics 223
6.1.2 Weld Pool Image Processing During Robotic Pulsed GTAW 225
6.1.3 Modeling of Dynamic Welding Process 231
6.1.4 Real-Time Control of Low Carbon Steel Welding Pool by PID Regulator During Robotic Pulsed GTAW 234
6.2 Real-Time Control of Weld Pool Dynamics and Seam Forming by Neural Self-Learning Controller During Robotic Pulsed GTAW 236
 6.2.1 Neuron Self-Learning PSD Controller for Low Carbon Steel Weld Pool 236
 6.2.2 Adaptive Neural PID Controller for Aluminium Alloy Welding Pool 239
6.3 Vision-Based Real-Time Control of Weld Seam Tracking and Weld Pool Dynamics During Aluminium Alloy Robotic Pulsed GTAW 244
 6.3.1 Welding Robotic System .. 245
 6.3.2 Image Processing During the Robot Seam Tracking 250
 6.3.3 Seam Tracking Controller of the Welding Robot 256
 6.3.4 Experiment Results of Seam Tracking and Monitoring During Robotic Welding 258
6.4 Compound Intelligent Control of Weld Pool Dynamics with Visual Monitoring During Robotic Aluminium Alloy Pulsed GTAW 261
 6.4.1 The Robotic Welding Systems with Visual Monitoring During Pulsed GTAW 261
 6.4.2 Image Obtaining and Processing for Weld Pool During Robotic Welding 262
 6.4.3 Modeling and Control Scheme for Welding Robot System 265
 6.4.4 Penetration Control Procedure and Results by Robotic Welding 269
6.5 The Chapter Conclusion Remarks 271
References .. 271

7 Conclusion Remarks ... 275

Index .. 277
Intelligentized Methodology for Arc Welding Dynamical Processes
Visual Information Acquiring, Knowledge Modeling and Intelligent Control
Chen, S.-B.; Wu, J.
2009, XXIV, 278 p. 502 illus., Hardcover
ISBN: 978-3-540-85641-2