Contents

1 Introduction .. 1
 1.1 Dynamics ... 1
 1.2 Formulation of Dynamic Analysis .. 3
 1.2.1 DAE vs. ODE ... 4
 1.2.2 Recursive formulations .. 6
 1.2.3 Velocity transformation methods .. 7
 1.3 Balancing of Mechanisms .. 10

2 Dynamics of Open-loop Systems ... 11
 2.1 Kinematic Constraints in Serial Systems .. 11
 2.2 Kinematic Constraints in Tree-type Systems ... 16
 2.3 Equations of Motion ... 19
 2.4 Constraint Wrench for Serial Systems ... 22
 2.5 Constraint Wrench in Tree-type Systems .. 25
 2.6 Algorithm for Constraint Wrenches .. 26
 2.7 Applications ... 29
 2.7.1 Two-link manipulator .. 29
 2.7.2 Four link gripper .. 32
 2.7.3 Two six-link manipulators ... 37
 2.8 Summary .. 40

3 Dynamics of Closed-loop Systems ... 45
 3.1 Equations of Motion ... 45
 3.1.1 Spanning tree .. 46
 3.1.2 Determinate and indeterminate subsystems .. 48
 3.1.3 The DeNOC matrices for the spanning tree .. 49
 3.1.4 Constrained equations of motion for a subsystem 49
 3.1.5 Constrained equations of motion for the spanning tree 52
 3.2 Algorithm for Constraint Wrenches .. 52
 3.3 Four-bar mechanism ... 55
 3.3.1 Equations of motion .. 56
 3.3.2 Numerical example .. 60
 3.4 Carpet Scrapping Machine .. 63
 3.4.1 Subsystem III ... 66
 3.4.2 Subsystem I .. 69
 3.4.3 Subsystem II .. 71
3.4.4 Numerical example ... 72
3.4.5 Computation efficiency ... 76
3.5 Spatial RSSR Mechanism ... 76
 3.5.1 Subsystem approach ... 78
 3.5.2 Numerical example .. 83
 3.5.3 Computation efficiency ... 86
3.6 Summary .. 86

4 Equimomental Systems .. 87
 4.1 Equimomental Systems for Planar Motion 87
 4.1.1 Two point-mass model ... 89
 4.1.2 Three point-mass model .. 90
 4.2 Equimomental Systems for Spatial Motion 93

5 Balancing of Planar Mechanisms .. 99
 5.1 Balancing of Shaking Force and Shaking Moment 100
 5.1.1 Equimomental system in optimization 101
 5.2 Balancing Problem Formulation ... 102
 5.2.1 Equations of motion ... 102
 5.2.2 Equations of motion for a point-mass system 106
 5.2.3 Shaking force and shaking moment 110
 5.2.4 Optimality criterion .. 112
 5.2.5 Mass redistribution method .. 113
 5.2.6 Counterweighting method .. 114
 5.3 Hoeken’s Four-bar Mechanism .. 118
 5.3.1 Balancing of shaking force ... 119
 5.3.2 Optimization of shaking force and shaking moment 121
 5.4 Carpet Scrapping Mechanism .. 130
 5.5 Summary ... 135

6 Balancing of Spatial Mechanisms ... 137
 6.1 Balancing Problem Formulation .. 138
 6.1.1 Dynamic equations of motion 138
 6.1.2 Shaking force and shaking moment 141
 6.1.3 Optimization problem .. 142
 6.2 Spatial RSSR Mechanism ... 147
 6.3 Summary ... 157

Appendix A .. 159
Appendix B .. 163
References .. 165
Index .. 173
Dynamics and Balancing of Multibody Systems
Chaudhary, H.; Saha, S.K.
2009, XIV, 176 p. 59 illus., Hardcover
ISBN: 978-3-540-78178-3