Contents

1 Computational Geometry 1
 Introduction
 1.1 An Example: Convex Hulls 2
 1.2 Degeneracies and Robustness 8
 1.3 Application Domains 10
 1.4 Notes and Comments 13
 1.5 Exercises 15

2 Line Segment Intersection 19
 Thematic Map Overlay
 2.1 Line Segment Intersection 20
 2.2 The Doubly-Connected Edge List 29
 2.3 Computing the Overlay of Two Subdivisions 33
 2.4 Boolean Operations 39
 2.5 Notes and Comments 40
 2.6 Exercises 41

3 Polygon Triangulation 45
 Guarding an Art Gallery
 3.1 Guarding and Triangulations 46
 3.2 Partitioning a Polygon into Monotone Pieces 49
 3.3 Triangulating a Monotone Polygon 55
 3.4 Notes and Comments 59
 3.5 Exercises 60

4 Linear Programming 63
 Manufacturing with Molds
 4.1 The Geometry of Casting 64
 4.2 Half-Plane Intersection 66
 4.3 Incremental Linear Programming 71
 4.4 Randomized Linear Programming 76

4.5 Unbounded Linear Programs 79
4.6* Linear Programming in Higher Dimensions 82
4.7* Smallest Enclosing Discs 86
4.8 Notes and Comments 89
4.9 Exercises 91

5 Orthogonal Range Searching 95
Querying a Database
5.1 1-Dimensional Range Searching 96
5.2 Kd-Trees 99
5.3 Range Trees 105
5.4 Higher-Dimensional Range Trees 109
5.5 General Sets of Points 110
5.6* Fractional Cascading 111
5.7 Notes and Comments 115
5.8 Exercises 117

6 Point Location 121
Knowing Where You Are
6.1 Point Location and Trapezoidal Maps 122
6.2 A Randomized Incremental Algorithm 128
6.3 Dealing with Degenerate Cases 137
6.4* A Tail Estimate 140
6.5 Notes and Comments 143
6.6 Exercises 144

7 Voronoi Diagrams 147
The Post Office Problem
7.1 Definition and Basic Properties 148
7.2 Computing the Voronoi Diagram 151
7.3 Voronoi Diagrams of Line Segments 160
7.4 Farthest-Point Voronoi Diagrams 163
7.5 Notes and Comments 167
7.6 Exercises 170

8 Arrangements and Duality 173
Supersampling in Ray Tracing
8.1 Computing the Discrepancy 175
8.2 Duality 177
8.3 Arrangements of Lines 179
8.4 Levels and Discrepancy 185
8.5 Notes and Comments | 186
8.6 Exercises | 188

9 Delaunay Triangulations

Height Interpolation

9.1 Triangulations of Planar Point Sets | 193
9.2 The Delaunay Triangulation | 196
9.3 Computing the Delaunay Triangulation | 199
9.4 The Analysis | 205
9.5* A Framework for Randomized Algorithms | 208
9.6 Notes and Comments | 214
9.7 Exercises | 215

10 More Geometric Data Structures

Windowing

10.1 Interval Trees | 220
10.2 Priority Search Trees | 226
10.3 Segment Trees | 231
10.4 Notes and Comments | 237
10.5 Exercises | 239

11 Convex Hulls

Mixing Things

11.1 The Complexity of Convex Hulls in 3-Space | 244
11.2 Computing Convex Hulls in 3-Space | 246
11.3* The Analysis | 250
11.4* Convex Hulls and Half-Space Intersection | 253
11.5* Voronoi Diagrams Revisited | 254
11.6 Notes and Comments | 256
11.7 Exercises | 257

12 Binary Space Partitions

The Painter’s Algorithm

12.1 The Definition of BSP Trees | 261
12.2 BSP Trees and the Painter’s Algorithm | 263
12.3 Constructing a BSP Tree | 264
12.4* The Size of BSP Trees in 3-Space | 268
12.5 BSP Trees for Low-Density Scenes | 271
12.6 Notes and Comments | 278
12.7 Exercises | 279
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Robot Motion Planning</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Getting Where You Want to Be</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Work Space and Configuration Space</td>
<td>284</td>
</tr>
<tr>
<td>13.2</td>
<td>A Point Robot</td>
<td>286</td>
</tr>
<tr>
<td>13.3</td>
<td>Minkowski Sums</td>
<td>290</td>
</tr>
<tr>
<td>13.4</td>
<td>Translational Motion Planning</td>
<td>297</td>
</tr>
<tr>
<td>13.5*</td>
<td>Motion Planning with Rotations</td>
<td>299</td>
</tr>
<tr>
<td>13.6</td>
<td>Notes and Comments</td>
<td>303</td>
</tr>
<tr>
<td>13.7</td>
<td>Exercises</td>
<td>305</td>
</tr>
<tr>
<td>14</td>
<td>Quadtrees</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>Non-Uniform Mesh Generation</td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Uniform and Non-Uniform Meshes</td>
<td>308</td>
</tr>
<tr>
<td>14.2</td>
<td>Quadtrees for Point Sets</td>
<td>309</td>
</tr>
<tr>
<td>14.3</td>
<td>From Quadtrees to Meshes</td>
<td>315</td>
</tr>
<tr>
<td>14.4</td>
<td>Notes and Comments</td>
<td>318</td>
</tr>
<tr>
<td>14.5</td>
<td>Exercises</td>
<td>320</td>
</tr>
<tr>
<td>15</td>
<td>Visibility Graphs</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>Finding the Shortest Route</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>Shortest Paths for a Point Robot</td>
<td>324</td>
</tr>
<tr>
<td>15.2</td>
<td>Computing the Visibility Graph</td>
<td>326</td>
</tr>
<tr>
<td>15.3</td>
<td>Shortest Paths for a Translating Polygonal Robot</td>
<td>330</td>
</tr>
<tr>
<td>15.4</td>
<td>Notes and Comments</td>
<td>331</td>
</tr>
<tr>
<td>15.5</td>
<td>Exercises</td>
<td>332</td>
</tr>
<tr>
<td>16</td>
<td>Simplex Range Searching</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Windowing Revisited</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Partition Trees</td>
<td>336</td>
</tr>
<tr>
<td>16.2</td>
<td>Multi-Level Partition Trees</td>
<td>343</td>
</tr>
<tr>
<td>16.3</td>
<td>Cutting Trees</td>
<td>346</td>
</tr>
<tr>
<td>16.4</td>
<td>Notes and Comments</td>
<td>352</td>
</tr>
<tr>
<td>16.5</td>
<td>Exercises</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>377</td>
</tr>
</tbody>
</table>
Computational Geometry
Algorithms and Applications
de Berg, M.; Cheong, O.; van Kreveld, M.; Overmars, M.
2008, XII, 386 p. 370 illus., Hardcover
ISBN: 978-3-540-77973-5