- Foreword .. V
- Preface .. VII
- Acknowledgements ... XIII

1 Introduction to Soft Computing 1
 1.1 Introduction .. 1
 1.2 Importance of Soft Computing 3
 1.3 Main Components of Soft Computing 4
 1.3.1 Fuzzy Logic .. 4
 1.3.2 Artificial Neural Networks 5
 1.3.3 Introduction to Evolutionary Algorithms 7
 1.3.4 Hybrid Intelligent Systems 8
 1.4 Summary .. 9
 1.5 Bibliography and Historical Notes 10
 1.6 Exercises .. 10

2 Life History of Brain 11
 2.1 Introduction ... 11
 2.2 Development of Brain with Age 12
 2.3 Technologies for Study the Details of Brain 14
 2.3.1 Electro Encephalo Graph (EEG) 15
 2.3.2 Computerized Axial Tomography (CAT) 15
 2.3.3 Positron Emission Tomography (PET) 15
 2.3.4 Magnetic Resonance Imaging (MRI) 16
 2.3.5 Magneto Encephalo Graphy (MEG) 16
 2.4 Brain Functioning 16
 2.5 Brain Structure 17
5.4 Learning Algorithm of a Summation Type

5.5 Benchmark Testing of Generalized Neuron Model

5.5.1 Ex-OR Problem

5.5.2 The Mackey-Glass Time Series

5.5.3 Character Recognition Problem

5.5.4 Sin(X1) * Sin(X2) Problem

5.5.5 Coding Problem

5.6 Generalization of GN model

5.6.1 GN Model-1

5.6.2 GN Model-2

5.6.3 GN Model-3

5.6.4 GN Model-4

5.7 Discussion on Benchmark Testing

5.8 Summary

5.9 Exercises

6 Applications of Generalized Neuron Models

6.1 Application of GN Models to Electrical Machine Modeling

6.1.1 GN Models

6.1.2 Results

6.1.3 Discussions

6.1.4 Training Time and Data Required

6.1.5 Fault Tolerant Capabilities

6.1.6 Effect of Different Mappings on GN Models

6.1.7 Effect of Different Normalizations on GNN Models

6.1.8 Conclusions

6.2 Electrical Load Forecasting Problem

6.2.1 Literature Review

6.2.2 Short Term Load Forecasting Using Generalized Neuron Model

6.2.3 Training of ANN and GN Model

6.2.4 Testing of ANN and GNM

6.2.5 Discussion on Training and Testing Results

6.3 Load Frequency Control Problem

6.3.1 Need of Load Frequency Control

6.3.2 Requirements for Selecting Controller Strategy

6.3.3 Modelling of Thermal Power Plant (Single Area System):

6.3.4 Response of Load Frequency Control of an Isolated (Single Area) Power System

6.3.5 Development of GN Based Load Frequency Controller
7.10 Properties of Fuzzy Sets
7.10.1 Commutative Property
7.10.2 Associative Property
7.10.3 Distributive Property
7.10.4 Idem Potency
7.10.5 Identity
7.10.6 Involution
7.10.7 Excluded Middle Law
7.10.8 Law of Contradiction
7.10.9 Demorgan’s Law
7.10.10 Transitive
7.11 Fuzzy Cartesian Product
7.12 Various Shapes of Fuzzy Membership Functions
7.13 Methods of Defining of Membership Functions
7.14 Fuzzy Compositional Operators
7.15 Relation
7.15.1 Representation Methods of Relations
7.15.2 Fundamental Properties of a Relation
7.15.3 Fuzzy Relation
7.15.4 Operation of Fuzzy Relation
7.15.5 Projection and Cylindrical Extension
7.16 Approximate Reasoning
7.17 Defuzzification Methods
7.18 Fuzzy Rule Based System
7.19 Summary
7.20 Bibliography and Historical Remarks
7.21 Exercises

8 Applications of Fuzzy Rule Based System
8.1 Introduction
8.2 System’s Modeling and Simulation Using Fuzzy Logic Approach
8.2.1 Selection of Variables, their Normalization Range and the Number of Linguistic Values
8.2.2 Selection of Shape of Membership Functions for Each Linguistic Value
8.2.3 Determination of Overlapping of Fuzzy Sets
8.2.4 Selection of Fuzzy Intersection Operators
8.2.5 Selection of Fuzzy Union Operators
8.2.6 Selection of Implication Methods
8.2.7 Selection of Compositional Rule
8.2.8 Selection of Defuzzification Method
8.2.9 Steady State D.C. Machine Model
8.2.10 Transient Model of D.C. Machine
8.2.11 Conclusions
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Control Applications</td>
<td>330</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Adaptive Control</td>
<td>332</td>
</tr>
<tr>
<td>8.3.2</td>
<td>PID Control System</td>
<td>335</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Fuzzy Control System</td>
<td>335</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Power System Stabilizer Using Fuzzy Logic</td>
<td>337</td>
</tr>
<tr>
<td>8.4</td>
<td>Summary</td>
<td>359</td>
</tr>
<tr>
<td>8.5</td>
<td>Bibliography and Historical Notes</td>
<td>360</td>
</tr>
<tr>
<td>8.6</td>
<td>Exercises</td>
<td>361</td>
</tr>
<tr>
<td>9</td>
<td>Genetic Algorithms</td>
<td>363</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>363</td>
</tr>
<tr>
<td>9.2</td>
<td>History of Genetics</td>
<td>364</td>
</tr>
<tr>
<td>9.3</td>
<td>Genetic Algorithms</td>
<td>366</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Selection</td>
<td>366</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Crossover</td>
<td>368</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Mutation</td>
<td>370</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Survival of Fittest</td>
<td>371</td>
</tr>
<tr>
<td>9.3.5</td>
<td>Population Size</td>
<td>371</td>
</tr>
<tr>
<td>9.3.6</td>
<td>Evaluation of Fitness Function</td>
<td>372</td>
</tr>
<tr>
<td>9.4</td>
<td>Effect of Crossover Probability on GA Performance</td>
<td>373</td>
</tr>
<tr>
<td>9.5</td>
<td>Effect of Mutation Probability on GA Performance</td>
<td>373</td>
</tr>
<tr>
<td>9.6</td>
<td>Main Components of GA</td>
<td>375</td>
</tr>
<tr>
<td>9.7</td>
<td>Variants</td>
<td>377</td>
</tr>
<tr>
<td>9.8</td>
<td>Applications of Genetic Algorithms</td>
<td>379</td>
</tr>
<tr>
<td>9.9</td>
<td>Summary</td>
<td>379</td>
</tr>
<tr>
<td>9.10</td>
<td>Bibliography and Historical Notes</td>
<td>380</td>
</tr>
<tr>
<td>9.11</td>
<td>Exercises</td>
<td>380</td>
</tr>
<tr>
<td>10</td>
<td>Applications of Genetic Algorithms to Load Forecasting Problem</td>
<td>383</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>383</td>
</tr>
<tr>
<td>10.2</td>
<td>Introduction to Simple Genetic Algorithms</td>
<td>384</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Crossover Operation</td>
<td>385</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Mutation</td>
<td>386</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Population Size (Pop Size)</td>
<td>387</td>
</tr>
<tr>
<td>10.3</td>
<td>Development of Improved Genetic Algorithm (IGM)</td>
<td>387</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Basis of Variation of Pc, Pm and Popsize</td>
<td>388</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Development of Fuzzy System</td>
<td>390</td>
</tr>
<tr>
<td>10.4</td>
<td>Application of Improved Genetic Algorithm (IGA)</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>to Electrical Load Forecasting Problem</td>
<td>390</td>
</tr>
<tr>
<td>10.5</td>
<td>Results</td>
<td>393</td>
</tr>
<tr>
<td>10.6</td>
<td>Integrated Fuzzy GA Technique</td>
<td>393</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Development of Adaptive Fuzzy System</td>
<td>395</td>
</tr>
<tr>
<td>10.7</td>
<td>Limitations of GA</td>
<td>401</td>
</tr>
<tr>
<td>10.8</td>
<td>Summary</td>
<td>402</td>
</tr>
</tbody>
</table>
11 Synergism of Genetic Algorithms and Fuzzy Systems for Power System Applications .. 403
11.1 Introduction ... 403
11.2 Transmission Planning, Pricing and Structure/Models of Indian Power Sector .. 404
11.3 GA-Fuzzy System Approach for Optimal Power Flow Solution .. 410
11.3.1 OPF Problem .. 411
11.3.2 Synergism of GA-Fuzzy System Approach 413
11.3.3 GA-Fuzzy System Approach for OPF Solution (GAF-OPF) ... 413
11.3.4 Test Results ... 416
11.3.5 Conclusions ... 431
11.4 Transmission Pricing Model Under Deregulated Environment .. 431
11.4.1 Introduction ... 431
11.4.2 Marginal Cost Based Transmission Pricing Method .. 434
11.4.3 Postage Stamp Method .. 446
11.4.4 MW Mile Methods .. 448
11.4.5 Hybrid Deregulated Transmission Pricing Model 452
11.4.6 Conclusion ... 456
11.5 Congestion Management Using GA-Fuzzy Approach 457
11.5.1 Introduction ... 457
11.5.2 Transmission Congestion Penalty Factors 459
11.5.3 Proposed Methods for Congestion Management 461
11.5.4 Test Results ... 463
11.5.5 Conclusions ... 466
11.5.6 Bibliography and Historical Notes 471

12 Integration of Neural Networks and Fuzzy Systems 479
12.1 Introduction ... 479
12.2 Adaptive Neuro-Fuzzy Inference Systems 481
12.3 Constraints of ANFIS ... 484
12.4 HIV/AIDS Population Model Using Neuro-Fuzzy Approach ... 484
12.4.1 Introduction ... 485
12.4.2 Roots of HIV/AIDS ... 485
12.4.3 Neuro-Fuzzy Approach of Modeling 487
12.4.4 Conclusions ... 495
12.5 Summary .. 498
12.6 Bibliographical and Historical Notes 498
12.7 Exercise .. 498
XXII Contents

13 ANN – GA-Fuzzy Synergism and Its Applications 501
 13.1 Introduction ... 501
 13.2 Training of ANN .. 502
 13.3 Advantages of GA ... 503
 13.4 ANN Learning Using GA 504
 13.5 Validation and Verification of ANN-GA Model 505
 13.6 Summary .. 507
 13.7 Bibliography and Historical Notes 508

References .. 509

Glossary ... 557
 I. Artificial Neural Network 557
 II. Fuzzy Systems ... 558
 III. Genetic Algorithms ... 560

Appendices .. 563

Power System Model and its Parameters 563
 A.1 Single Machine Infinite Bus System 563
 A.2 Multimachine Power System 564

C-Code For Fuzzy System .. 567
 B.1 Introduction .. 567
 B.2 Program for Fuzzy Simulation 567

Data For 26-Bus System ... 589

Data For 6-Bus System .. 593

Data For IEEE 30-Bus System 595

Data For Modified IEEE 30-Bus System 599

Data For Indian UPSEB 75-Bus System 603

Index ... 609
Soft Computing
Techniques and its Applications in Electrical Engineering
Chaturvedi, D.K.
2008, XXII, 612 p. 320 illus., Hardcover
ISBN: 978-3-540-77480-8