Contents

Part I

1 Introduction, Facts and Phenomenology .. 3
 1.1 Hadron Initiated Air Showers ... 3
 1.2 Gamma Ray and Electron Initiated Air Showers 17
 1.2.1 Gamma Ray Showers ... 17
 1.2.2 Electron Initiated Showers 23
 1.2.3 Pre-showering Effect ... 24
 1.3 Neutrino Initiated Air Showers .. 24
 1.4 Dust Grain Hypothesis ... 27
References .. 29

2 Shower Detection Methods and Basic Event Reconstruction 33
 2.1 Introduction .. 33
 2.2 Particle Detector Arrays .. 34
 2.3 Air Cherenkov Detector Arrays .. 38
 2.4 Air Fluorescence Detectors .. 39
 2.5 Radio Emission Detection .. 41
 2.6 RADAR Ranging and Detection .. 42
 2.7 Acoustic Detection .. 46
 2.8 Hybrid Detector Systems and Coupled Experiments 48
 2.8.1 Surface Experiments ... 48
 2.8.2 Special Detector Systems .. 49
 2.8.3 Coupled Surface and Underground Experiments 50
 2.9 Directly and Indirectly Accessible Shower Parameters 51
 2.10 Basic Shower Reconstruction Procedure 52
 2.10.1 Arrival Direction .. 54
 2.10.2 Shower Core Location .. 56
 2.10.3 Shower Size, Energy and Age Determination 57
 2.10.4 Array Acceptance and Detection Efficiency 58
3 Hadronic Interactions and Cascades

3.1 Introduction ... 77
3.2 Hadronic Cross Sections 81
 3.2.1 \((N - N)\) and \((\pi - N)\) Cross Sections and Energy Dependence ... 82
 3.2.2 \((N - Air)\) and \((\pi - Air)\) Cross Sections and Energy Dependence, Glauber Concept 83
 3.2.3 \((N - A), (A - A), (\pi - A)\) and \((K - A)\) Cross Sections and Energy Dependence 85
3.3 Interaction Mean Free Path 88
3.4 Projectile and Target Fragmentation 89
3.5 Secondary Particle Multiplicity 95
 3.5.1 Particle Production and Composition of Secondaries 95
 3.5.2 Energy Dependence of Multiplicity 97
 3.5.3 Projectile and Target Mass Dependence of Secondary Particle Multiplicity 100
 3.5.4 Multiplicity Distribution 100
3.6 Kinematic Aspects of Secondaries, Longitudinal and Transverse Momenta ... 102
3.7 Large Transverse Momenta of Secondaries, Energy Dependence ... 104
3.8 Leading Particle Effect, Elasticity and Inelasticity 106
 3.8.1 Definition and Direct Determination of Elasticity/Inelasticity ... 106
 3.8.2 Indirect Methods to Determine the Elasticity/Inelasticity ... 108
 3.8.3 Energy Dependence of Elasticity/Inelasticity ... 109
3.9 Correlations Between Interaction Observables 113
3.10 Models of High Energy Interactions: I. Early Models 115
 3.10.1 History and Background Information 115
 3.10.2 CKP-Model of Hadron Production 119
 3.10.3 Isobar-Fireball Model 122
 3.10.4 Feynman Scaling Model 123
 3.10.5 Fragmentation and Limiting Fragmentation 125
3.11 Models of High Energy Interactions: II. Modern Models 127
 3.11.1 General Comments ... 127
 3.11.2 Parton, Mini-Jet, Quark-Gluon-String and Gribov-Regge Concepts 127
4 Electromagnetic Interactions and Photon–Electron Cascades 147
 4.1 Introduction ... 147
 4.2 Definition of Frequently Used Terms 150
 4.2.1 Screening Energy 150
 4.2.2 Radiation Length in Matter 151
 4.2.3 Critical Energy of Electrons 154
 4.2.4 Scattering Energy 155
 4.3 Electromagnetic Interactions Relevant for Cascade and Shower
 Development ... 155
 4.3.1 Bremsstrahlung by Electrons 155
 4.3.2 Electron Pair Production 157
 4.3.3 Coulomb Scattering of Electrons 158
 4.3.4 Ionization and Excitation by Electrons 159
 4.3.5 Compton Effect 160
 4.4 Miscellaneous EM-Interactions of Lesser or No Relevance for
 Cascades .. 162
 4.4.1 Photo-Electric Effect 162
 4.4.2 Photonuclear Reactions 162
 4.4.3 Photon–Photon Interactions 164
 4.4.4 Cherenkov and Transition Radiation, Radio
 and Fluorescence Emission 165
 4.4.5 Synchrotron Radiation 166
 4.4.6 Inverse Compton Scattering 167
 4.4.7 Positron Annihilation 167
 4.5 Processes Under Extreme Conditions 168
 4.5.1 Landau-Pomeranchuk-Migdal (LPM) Effect 169
 4.5.2 Magnetic Bremsstrahlung, Magnetic Pair Production
 and Pre-showering 171
 4.6 Photon–Electron Cascade Theory 174
 4.6.1 General Comments 174
 4.6.2 Historical Overview 175
 4.6.3 Basic Cascade Process and Phenomenology 176
 4.6.4 Longitudinal Shower Development, Simple Picture 177
 4.6.5 Track Length Integral 178
 4.6.6 Analytical Treatment, Assumptions, Approximations
 and Limitations 179
 4.6.7 Diffusion Equations 180
4.6.8 Solutions of the Diffusion Equations: Approximation A . 183
4.6.9 Comments to Approximation B 190
4.6.10 Three-Dimensional Treatment and Energy Flow
Distribution .. 190
4.6.11 Lateral Spread of Electrons and Photons 191
4.6.12 Additional Results of Classical Cascade Theory 194
4.6.13 Multi-Dimensional Descriptions of Electromagnetic
Cascades Using Monte Carlo Simulations 194
4.6.14 Special Longitudinal Shower Profiles 195
4.7 Expressions for Practical Applications 196
4.7.1 Longitudinal Development, Shower Size and Age 196
4.7.2 Lateral Distribution of Particles, NKG-Function and
Shower Age .. 198
References ... 200

5 Muon and Neutrino Interactions 205
5.1 Introduction .. 205
5.2 Muons ... 206
5.2.1 Muon Production: Main Channels 206
5.2.2 Photoproduction of Muon Pairs 207
5.2.3 Muon Energy Losses, Overview 208
5.2.4 Ionization Losses of Muons .. 210
5.2.5 Muon Bremsstrahlung ... 211
5.2.6 Direct Electron Pair Production by Muons 214
5.2.7 Direct Muon Pair Production by Muons, Muon
Trident Events .. 219
5.2.8 Photonuclear Interactions of Muons 219
5.2.9 Summary of Muon Reaction Probabilities
and Energy Loss ... 222
5.2.10 Recent Work and Developments 224
5.3 Neutrinos ... 226
5.3.1 Neutrino Production ... 226
5.3.2 Neutrino Reactions .. 227
5.3.3 Neutrino Cross Sections .. 228
5.3.4 Predicted High Energy Neutrino Cross Sections 231
5.3.5 Neutrino-Opaque Earth .. 233
References ... 233

6 Longitudinal Development and Equal Intensity Distributions 237
6.1 Introduction .. 237
6.2 Physical Processes and Concepts 238
6.2.1 Phenomenological Aspects 238
6.2.2 Theoretical Studies and Simulation Results 243
6.3 Attenuation of Shower Rate and Absorption of Shower Particles .. 247
8 Lateral Structure of Showers and Energy Flow 359
 8.1 Introduction 359
 8.2 Shower Development and Particle Spread 360
 8.3 Radial Dependence of Particle Composition and Particle Energy 363
 8.4 Energy Release of Particles in the Atmosphere 366
 8.5 Density Measurements and Detector Response, Zenith Angle Dependence 367
 8.5.1 General Aspects 367
 8.5.2 Density Measurements and Detector Response 367
 8.5.3 Zenith Angle Dependence 371
 8.5.4 Fluctuations and Accuracy of Measurements 372
 8.6 Lateral Distribution of Shower Particles 373
 8.6.1 Experimental Considerations 373
 8.6.2 Measured Charged Particle Distributions 374
 8.6.3 Comments on Classical Theoretical and Refined Lateral Distribution Functions 376
 8.7 Azimuthal Asymmetries of Particle Distribution 380
 8.8 Geomagnetic Effects 383
 8.9 Lateral Distribution of Energy Flow 385
 8.9.1 Concept of Energy Flow 385
 8.9.2 Energy Flow Data 385
 8.10 Array Specific Lateral Particle Distribution Functions 387
References

8.11 Effects of Shower Front Structure, Time Dispersion and Delayed Particles on Density Measurements .. 392
8.12 Lateral Distribution of Air Cherenkov Photons 392
8.13 Mathematical Expressions and Fits .. 393

9 Temporal Structure of Showers and Front Curvature 399
9.1 Introduction ... 399
9.2 Basic Definitions of Timing Observables 401
9.3 Early Work, Basic Results and Front Curvature 402
 9.3.1 Experimental Aspects, Timing and Curvature 402
 9.3.2 Simulations and Primary Mass Signatures 404
9.4 Recent Experimental Work and Simulations 408
9.5 Special Analysis Methods ... 412
9.6 Time Dispersion and Delayed Particle Effects on Density Measurements .. 413

10 Derived Shower and Interaction Parameters, Refined Event Reconstruction ... 419
10.1 Introduction ... 419
10.2 Primary Energy Estimation .. 422
 10.2.1 Energy Related Observables .. 422
 10.2.2 Energy Estimation Using Deep Water Cherenkov Detectors .. 425
 10.2.3 Energy Estimation Using Unshielded Scintillation Detectors ... 431
 10.2.4 Energy Estimation Using the Muon or Truncated Muon Number (Size) .. 438
 10.2.5 Energy Estimation Using Atmospheric Cherenkov, Fluorescence and Radio Emission 440
10.3 Primary Mass Estimation ... 441
 10.3.1 Mass Related Observables ... 441
 10.3.2 Basic Differences Between \(p \) and Fe Showers and Kinematically Related Mass Signatures 441
 10.3.3 Low Energy Muon–Electron Correlation 445
 10.3.4 High Energy Muon, Surface Electron and Atmospheric Cherenkov Photon Correlations 451
 10.3.5 Primary Mass Sensitivity of Temporal Observables and Shower Front Structure .. 453
 10.3.6 Additional Primary Mass Related Observables 457
10.4 Shower Age ... 459
 10.4.1 Introduction ... 459
 10.4.2 Experimental Facts and Theoretical Aspects 460
10.4.3 Age Parameter Determination, Data and Implications . . . 464
10.5 Additional and Hidden Parameters 470
10.5.1 Height of First Interaction 470
10.5.2 Hadronic Interaction Parameters 474
References .. 475

11 Primary Cosmic Radiation and Astrophysical Aspects 479
11.1 Introduction ... 479
11.2 Nature of the Primary Radiation 480
 11.2.1 Brief Summary .. 480
 11.2.2 Classification of Nuclei 482
11.3 Low Energy Primary Radiation 482
 11.3.1 Hadronic Spectra and Composition 483
 11.3.2 Electrons (Negatrons and Positrons) (e^+, e^-) 484
 11.3.3 Antimatter .. 488
11.4 Gamma Radiation .. 491
 11.4.1 Diffuse Gamma Radiation 492
 11.4.2 Gamma Ray Point Sources 495
11.5 Established and Predicted Neutrino Spectra 496
 11.5.1 Atmospheric Background 497
 11.5.2 Model Predictions ... 499
 11.5.3 Neutrino Induced Air Showers 500
11.6 High Energy All-Particle Primary Spectrum 502
 11.6.1 Introduction .. 502
 11.6.2 Derived All-Particle Spectrum: Early Work 504
 11.6.3 Derived All-Particle Spectrum: Recent Work 507
 11.6.4 Comments on Primary Energy Spectra 524
 11.6.5 Mathematical Expressions and Fits 525
11.7 High Energy Primary Composition 528
 11.7.1 Introduction .. 528
 11.7.2 Derived Primary Mass Composition 529
 11.7.3 Mean Logarithmic Mass, $\langle \ln(A) \rangle$ 538
11.8 Gamma Ray Initiated Showers 543
 11.8.1 Introduction .. 543
 11.8.2 Gamma Ray to Hadron Ratio 546
 11.8.3 Experimental Situation and Gamma Ray-Hadron Ratio Data .. 548
 11.8.4 Pre-Showering of Gamma Rays 550
 11.8.5 Gamma Rays from Cygnus X-3 550
11.9 Arrival Direction and Anisotropy 551
 11.9.1 Introduction .. 551
 11.9.2 Magnetic Deflection ... 553
 11.9.3 Harmonic Analysis of Data 555
 11.9.4 Data on Arrival Direction and Anisotropy 557
Contents

11.10 Time Variation of Shower Intensity 562
 11.10.1 Introduction ... 562
 11.10.2 Solar Time and Sidereal Time 564
 11.10.3 Compton-Getting Effect 565
11.11 Origin and Propagation .. 568
 11.11.1 Origin of Primary Radiation 568
 11.11.2 Conventional Acceleration Mechanisms 568
 11.11.3 Top-Down Models ... 571
 11.11.4 Correlation of Ultrahigh Energy Events with Likely
 Astrophysical Source Objects 571
 11.11.5 Greisen-Zatsepin-Kuzmin (GZK) Cutoff and Propagation
 of Hadrons in Space 573
 11.11.6 Propagation of Gamma Rays in Space 575
References .. 577

Index .. 589

Part II

12 Common Shower Properties, Observables and Data 613
 12.1 General Comments ... 613
 12.2 Shower Size or Number Spectrum 614
 12.2.1 Introduction ... 614
 12.2.2 Problems with Size Measurements 617
 12.2.3 Shower Size Spectra, Early Epoch 621
 12.2.4 Shower Size Spectra, Recent Epoch 626
 12.2.5 Mathematical Expressions and Fits 636
 12.3 Muon Size or Number Spectra 638
 12.3.1 Introduction ... 638
 12.3.2 Muon Size Spectra, Early Epoch 639
 12.3.3 Muon Size Spectra, Recent Epoch 641
 12.3.4 Mathematical Expressions and Fits 642
 12.4 Shower Density Spectra .. 646
 12.4.1 Introduction ... 646
 12.4.2 Phenomenological – Theoretical Aspects 648
 12.4.3 Charged Particle Density Spectra 650
 12.4.4 Muon Density Spectra 659
 12.4.5 Cherenkov Photon Density Spectra 660
 12.4.6 Mathematical Expressions and Fits 661
 12.5 Density Spectra at Fixed Core Distance, Energy Loss Spectra
 of Showers .. 662
 12.5.1 Introduction ... 662
 12.5.2 Concept of Energy Loss Density 663
 12.5.3 Calibration and Units of Energy Loss Density 664
12.5.4 Energy Loss of Showers and Energy Loss Spectra 665
12.5.5 Absorption Coefficient and Energy Loss Spectra 666
12.5.6 Air Cherenkov Photon Density and Energy Loss 667
12.5.7 Measurements and Data of $\rho(x, x), Q(x, x)$ and Shower Energy Loss Spectra .. 667
12.5.8 Mathematical Expressions and Fits 674

References .. 678

13 Hadrons ... 683
13.1 Introduction ... 683
 13.1.1 Early Work .. 684
 13.1.2 Emulsion Chambers 685
 13.1.3 Recent Work 687
 13.1.4 Comments on Data Presentation 687
13.2 Lateral Distribution and Structure Function 688
 13.2.1 Experimental Results, Early Work 688
 13.2.2 Experimental Results, Recent Work 691
 13.2.3 Mathematical Expressions and Fits 695
13.3 Energy Spectra and Related Data 699
 13.3.1 Experimental Results, Early Work 700
 13.3.2 Experimental Results, Recent Work 705
13.4 Temporal Properties 707
 13.4.1 General Comments 707
 13.4.2 Simulation Results 709
 13.4.3 Experimental Exploitation and Data 710
13.5 Charge to Neutral Ratio 711
13.6 Hadron Content and Composition 715
 13.6.1 Low Energy Hadrons 716
 13.6.2 Medium and High Energy Hadrons 718
 13.6.3 Antinucleons .. 721
 13.6.4 Pions, Kaons and Charmed Particles 723
13.7 Miscellaneous Topics 723
 13.7.1 Single-Core Showers and Leading Particles 723
 13.7.2 Multi-Core Showers 725
 13.7.3 Transverse Momenta and $(E_b \cdot r)$ Product 726
 13.7.4 Production Height of High Energy Hadrons 734

References .. 735

14 Muons .. 741
14.1 Introduction ... 741
14.2 Lateral Structure Functions and Density Distributions 743
 14.2.1 Mathematical Lateral Structure Functions 743
 14.2.2 Simulated Lateral Distributions 746
 14.2.3 Experimental Lateral Distributions 747
Contents

14.3 Energy and Momentum Spectra .. 767
14.4 Temporal Properties and Muon Front Curvature 774
14.5 Charge Ratio and Geomagnetic Charge Separation 779
14.6 Height of Origin, Core Angle Distribution and \((E_\mu \cdot r_\mu)\) Product .. 783
 14.6.1 General Comments on Experimental Methods 783
 14.6.2 Reconstruction Procedure 787
14.7 Multi-Muon Events and Muon Families 790
14.8 Muon Fluctuations .. 793
14.9 Genetics of Muons ... 794
References ... 798

15 Electrons and Photons ... 803
15.1 Introduction ... 803
15.2 Lateral Distribution Functions ... 806
 15.2.1 Classical Theoretical Distribution Functions 806
 15.2.2 Lagutin Distribution Function 808
 15.2.3 Simulated Lateral Distributions 809
 15.2.4 Experimental Lateral Distributions 810
15.3 Energy Spectra, Energy Flow and Related Data 822
 15.3.1 Simulated Photon–Electron Spectra 822
 15.3.2 Measured Photon–Electron Spectra 824
15.4 Photon–Electron and Charge Ratio, Geomagnetic Effects 828
15.5 Temporal Properties ... 831
References ... 832

16 Atmospheric Cherenkov Radiation .. 835
16.1 Introduction ... 835
16.2 Phenomenology and Theory of Single Particle Cherenkov Radiation ... 837
 16.2.1 Fundamental Physical Process 837
 16.2.2 Radiation Yield and Spectral Distribution 840
16.3 Phenomenology and Theory of Cherenkov Radiation in Air Showers ... 842
 16.3.1 Comments on Theoretical Studies 842
 16.3.2 Lateral and Angular Distribution 846
 16.3.3 Temporal Properties and Pulse Shape 849
 16.3.4 Light Front Curvature ... 852
 16.3.5 Spectrum and Polarization of Cherenkov Light 852
 16.3.6 Basic Primary Energy Estimation Using Optical Cherenkov Photons ... 853
 16.3.7 Modern Refined Energy Estimation and Primary Mass Effects ... 855
 16.3.8 Correlations Between Cherenkov Observables 857
16.4 Gamma Ray Initiated Showers and High Energy Gamma Ray Astronomy .. 857
16.4.1 General Comments ... 857
16.4.2 Cherenkov Imaging Technique 859
16.5 Optical Background, Atmospheric Light Scattering, Absorption and Attenuation 862
16.5.1 Optical Background .. 862
16.5.2 Atmospheric Light Scattering, Absorption and Attenuation .. 862
16.6 Experimental Data and Interpretation 864
16.6.1 Environmental and Instrumental Aspects and Detectability .. 864
16.6.2 Lateral and Angular Distribution, Structure Functions 865
16.6.3 Temporal Properties, Pulse Shape and Light Front Curvature ... 871
16.6.4 Correlations Between Cherenkov and Particle Observables ... 872
16.6.5 Cherenkov Density Spectra 874
16.6.6 Miscellaneous Data .. 874

References .. 874

17 Atmospheric Fluorescence ... 879
17.1 Introduction ... 879
17.2 Fluorescence and Its Detection in E.A.S. 882
17.2.1 Basics and Early Work 882
17.2.2 Recent Fluorescence Studies, Yield 885
17.3 Optical Background, Atmospheric Scattering and Absorption 892
17.3.1 General Background .. 892
17.3.2 Night Sky Luminosity ... 893
17.3.3 Light Scattering in the Atmosphere 894
17.3.4 Light Absorption and Attenuation in the Atmosphere ... 895
17.3.5 Cherenkov Background .. 896
17.3.6 Relative Contributions of Fluorescence and Cherenkov Light to Detector Signal 897
17.4 Shower Detection and Event Reconstruction 900
17.4.1 Signal Level at Detector and Time Structure 901
17.4.2 Trajectory Reconstruction 902
17.4.3 Shower Profile, Primary Energy and Mass Determination. 903
17.4.4 Trigger Criteria, Aperture and Counting Rates 906
17.4.5 Detector Calibration and Optimization 908
17.4.6 Atmospheric Monitoring Techniques 909
17.5 Measurements and Data .. 910
References .. 910
18 Radio Emission and Detection ... 913
 18.1 Introduction ... 913
 18.2 Radio Burst Generation Processes ... 914
 18.3 Early Work ... 915
 18.3.1 Initial Search for Radio Bursts and Production
 Mechanisms ... 915
 18.3.2 Discovery of Radio Bursts .. 916
 18.4 Theoretical Considerations and Theories of Radio Emission 917
 18.4.1 Negative Charge Excess and Cherenkov Radio Emission 917
 18.4.2 Geomagnetic Charge Separation .. 919
 18.4.3 Geoelectric Charge Separation .. 922
 18.4.4 Transition Radiation ... 924
 18.4.5 Geo-Synchrotron Radiation .. 925
 18.4.6 Comments on Coherence ... 927
 18.4.7 Polarization of the Radiation .. 927
 18.5 Experimental Data and Phenomenology ... 928
 18.5.1 Background ... 928
 18.5.2 Measurements and Empirical Relations 929
 18.5.3 Pulse Characteristics and Frequency Spectrum 936
 18.6 Recent Work .. 936
 18.7 Concluding Comments and Outlook ... 943
References ... 945

19 Correlations and Miscellaneous Topics ... 949
 19.1 Introduction ... 949
 19.2 Electron-Muon Correlations ... 950
 19.2.1 General Comments ... 950
 19.2.2 Experimental Data and Simulation Results 950
 19.3 Electron-Hadron and Muon-Hadron Correlations 957
 19.4 Miscellaneous Correlations ... 966
 19.4.1 Hadron Related Correlations .. 966
 19.4.2 Muon Energy – Core Distance Correlations 969
 19.4.3 Muon/Electron – Core Distance Correlations 969
 19.4.4 Age Parameter Related Correlations 971
 19.4.5 Long-Distance Correlated Events and Astrophysical
 Implications .. 971
 19.5 Miscellaneous Topics .. 975
 19.5.1 General Comments ... 975
 19.5.2 Horizontal and Upward Directed Air Showers 976
 19.5.3 Muon Poor and Muon Rich Showers 979
 19.5.4 Decoherence Measurements ... 979
 19.5.5 Unusual Phenomena ... 981
 19.5.6 Missing Energy in Air Showers ... 983
References ... 984
20 Air Shower Simulations .. 989
 20.1 Introduction .. 989
 20.2 Monte Carlo Methods .. 991
 20.2.1 Simulation Strategy ... 991
 20.2.2 Program Architecture ... 996
 20.2.3 Program Reliability, Overall Tests and Simulation
 Supervision Routines .. 1002
 20.3 Energy Splitting, Thinning and Hybrid Methods 1004
 References ... 1006

21 Definitions and Relations .. 1009
 21.1 General Comments ... 1009
 21.2 Definitions of Terms and Quantities 1010
 References ... 1033

A Experimental Installations .. 1035
 A.1 EAS Arrays and Cosmic Ray Ground Facilities 1035
 A.1.1 Lists of Array and Facility Sites 1035
 A.1.2 Layouts of Selected Air Shower Arrays of Past
 and Present ... 1040
 A.2 Cosmic Ray Underground Installations of Past and Present ... 1064
 A.2.1 Underground Muon and Neutrino Detectors 1064
 A.2.2 Layouts of Major Underground Detectors Associated
 with Air Shower Arrays ... 1066
 References ... 1067

B Miscellaneous Relations, Tables, Lists and Constants 1071
 B.1 Electromagnetic Interaction Related Constants and Parameters 1071
 B.2 Bethe-Bloch Ionization Loss Formula 1072
 B.3 The Atmosphere .. 1073
 B.3.1 Characteristic Data and Relations 1073
 B.3.2 Standard and Real Atmospheres 1077
 B.3.3 Special Atmospheres and Their Variations 1077
 B.4 Chapman Function ... 1081
 B.5 Gross Transformation .. 1083
 B.6 Energy, Particle, Photon and Magnetic Field Densities in Space 1083
 B.7 Data on Cherenkov Radiation 1084
 B.7.1 Cherenkov Radiation in the Atmosphere 1084
 References ... 1085

C List of Symbols ... 1087

D Abbreviations and Acronyms .. 1091
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Cosmic Ray Conferences</td>
<td>1093</td>
</tr>
<tr>
<td>Index</td>
<td>1095</td>
</tr>
</tbody>
</table>
Extensive Air Showers
Grieder, P.K.F.
2010, LIV, 1118 p. In 2 volumes, not available separately., Hardcover
ISBN: 978-3-540-76940-8