Spliceosomal Proteins in Plants

Y. Ru, B.-B. Wang, and V. Brendel

Contents

Introduction .. 1
Small Nuclear RNAs .. 2
Small Nuclear Ribonucleoproteins .. 3
Sm Core Proteins ... 3
U1 snRNP-Specific Proteins .. 3
Other snRNP-Specific Proteins in the Major Spliceosome .. 4
U11/U12 snRNP-Specific Proteins .. 5
Splicing Factors .. 5
Proteins Involved in Splice Site Selection .. 5
Serine/Arginine-Rich Proteins ... 6
Regulation of Splicing in Plants ... 9
Conclusion and Perspective ... 11
References .. 11

Abstract The spliceosome is a large nuclear structure consisting of dynamically interacting RNAs and proteins. This chapter briefly reviews some of the known components and their interactions. Large-scale proteomics and gene expression studies may be required to unravel the many intricate mechanisms involved in splice site recognition and selection.

Introduction

The spliceosome is a large ribonucleoprotein (RNP) complex whose highly orchestrated assembly at each intron involves small nuclear RNAs (snRNAs) and hundreds of proteins. Two types of spliceosomes have been identified in both

V. Brendel
Department of Genetics, Development and Cell Biology, Iowa State University,
Ames, IA 50011-3260, USA
e-mail: vbrendel@iastate.edu

A.S.N. Reddy, M. Golovkin (eds.), Nuclear pre-mRNA Processing in Plants: Current Topics in Microbiology and Immunology 326.
© Springer-Verlag Berlin Heidelberg 2008
vertebrates and plants and are referred to as major (or U2 type) and minor (or U12 type) spliceosomes. They differ in their snRNA composition, but differences in their protein composition are not completely understood, although some specific proteins were identified from the minor spliceosome (Will et al. 1999, 2004; Lorković et al. 2005). The minor spliceosome is involved in the splicing of a small fraction of introns with distinct donor site and branchpoint motifs (see the chapter by C. G. Simpson and J. W. S. Brown, this volume). A computational screen of the Arabidopsis genome identified 74 snRNA genes and about 400 genes encoding known or putative splicing-related proteins (Wang and Brendel 2004). Here we briefly review the snRNA genes characteristic for the two types of spliceosomes and then discuss the major classes of plant splicing-related proteins.

Small Nuclear RNAs

Like its counterparts in yeasts and metazoa, the major spliceosome in plants also contains five types of U-rich snRNAs, referred to as U1, U2, U4, U5, and U6 snRNA (reviewed in Lorković et al. 2000b; Reddy 2001). All five types were identified experimentally in Arabidopsis (Vankan et al. 1988; Vankan and Filipowicz 1988, 1989; Waibel and Filipowicz 1990; Hofmann et al. 1992). A genome-wide survey in Arabidopsis identified a total of 70 genes encoding these snRNAs, including 14 U1, 18 U2, 11 U4, 14 U5, and 13 U6 snRNA genes (Wang and Brendel 2004). Most of these genes seem to be active, as their promoter regions contain both TATA box and conserved upstream element (USE) motifs (Wang and Brendel 2004). Four types of snRNA genes (U1, U2, U4, and U5) are transcribed by RNA polymerase II (Pol II) (Vankan et al. 1988; Vankan and Filipowicz 1989; Connelly and Filipowicz 1993), while U6 snRNA genes are transcribed by polymerase III (Pol III) (Waibel and Filipowicz 1990). snRNA genes were also experimentally identified from other plant species, including bean (van Santen and Spritz 1987), pea (Hanley and Schuler 1991), potato (Vaux et al. 1988; Waibel and Filipowicz 1990), wheat (Musci et al. 1992), and maize (Leader et al. 1993). For the minor spliceosome, four type of snRNAs named U11, U12, U4atac, and U6atac replace the U1, U2, U4, and U6 snRNA in the major spliceosome, while U5 snRNA is used in both major and minor spliceosomes (Tarn and Steitz 1997). Arabidopsis U12, U6atac, and U4atac were identified both computationally and experimentally (Shukla and Padgett 1999; Wang and Brendel 2004; Lorković et al. 2005), while U11 snRNA has only been computationally predicted (Wang and Brendel 2004). The four minor spliceosome snRNA genes also have the conserved TATA box and USE motifs in their promoter regions (Wang and Brendel 2004). Plant snRNAs likely play similar functions as their mammalian homologs, because their secondary structure and all functional domains are well conserved between plants and mammals (Lorković et al. 2000b). Recently, there is accumulating evidence that the snRNAs are involved in the catalysis of splicing, indicating that the spliceosome may be an RNA-centric enzyme similar to the ribosome (reviewed in Valadkhan 2005).
Small Nuclear Ribonucleoproteins

The major spliceosome is assembled dynamically at each intron, facilitated by interactions of the spliceosomal small nuclear ribonucleoproteins (snRNPs) with the pre-mRNA. Proteomic studies isolated five different snRNPs (U1, U2, U5, U4/U6, and U4/U6.U5 tri-snRNP) from human and yeast (Fabrizio et al. 1994; Caspary et al. 1999; Gottschalk et al. 1999; Krämer et al. 1999; Stevens and Abelson 1999; Stevens et al. 2001). Spliceosome assembly starts with U1 snRNP binding to the 5′-splice site, followed by U2 snRNP binding to the intron branch site, association of the U4/U6.U5 tri-snRNP, and release of U1 and U4 snRNPs to form the catalytic complex (reviewed in Burge et al. 1999). Many common (Sm core proteins) and specific proteins binding to the snRNAs were identified in each snRNP (reviewed in Will and Lührmann 2001). No proteomics approach has been applied to plant spliceosomes so far. Computational genome screening using human homologs as query sequences identified 91 snRNP protein-coding genes conserved in Arabidopsis, fewer than 10 of which have been experimentally studied (Wang and Brendel 2004).

Sm Core Proteins

Seven common proteins were identified in U1, U2, U4, and U5 snRNPs. All of them contain an Sm domain and thus were named as SmB, SmD1, SmD2, SmD3, SmE, SmF, and SmG (reviewed in Will and Lührmann 2001). Seven “like Sm” proteins (Lsm2–8) are the counterparts of Sm proteins in U6 snRNP. The Sm proteins bind to the snRNAs to form the structural core of the snRNPs. The Sm domain mediates protein interactions with other core proteins and snRNP-specific proteins. One additional Lsm protein exists (Lsm1) but cannot bind to snRNA (reviewed in Will and Lührmann 2001). All 15 Sm core proteins are conserved in Arabidopsis, with nine of them encoded by duplicated genes. All 24 genes are expressed based on EST data (Wang and Brendel 2004), but only Lsm5 (SAD1) has been experimentally characterized. Lsm5 (SAD1) is expressed universally at a low level in Arabidopsis. Mutation of Lsm5 increases plant sensitivity to drought stress and ABA (Xiong et al. 2001). Lsm5 protein may not be essential to the spliceosome but instead may affect the specificity or efficiency of the splicing machinery.

U1 snRNP-Specific Proteins

Three U1 snRNP-specific proteins (U1-70K, U1-A, and U1-C) are shared between human and yeast (Gottschalk et al. 1998). All three proteins exist in plants, and two of them (U1-70K and U1-A) are well characterized (Simpson et al. 1995; Golovkin and Reddy 1996). Arabidopsis U1-70K (atU1-70K) is an essential protein of 427
amino acid residues containing an RNA binding domain and an RS domain (Golovkin and Reddy 1996). The N-terminus of atU1-70K is conserved in eukaryotic organisms, while the C-terminal RS domain has much more variation. Four SR proteins (SR33, SR45, SRZ21, SRZ22) interact with atU1-70K, possibly through their RS domains (Golovkin and Reddy 1998, 1999). Reduced expression levels of atU1-70K in floral organs cause abnormal petal and stamen development (Golovkin and Reddy 2003). atU1-70K can be alternatively spliced by retaining the long sixth intron (910 nt), which leads to a truncated protein (Golovkin and Reddy 1996). Recently the gene structure and alternative splicing pattern of U1-70K gene were found to be conserved in rice and maize (Gupta et al. 2006; Wang and Brendel 2006a). U1-A gene was identified from potato and Arabidopsis. Similar to their human counterparts, plant U1-A proteins can bind specifically to the U1 snRNA loop II sequence (Simpson et al. 1995). U1-70K, U1-A, and the yet uncharacterized U1-C gene are all single copy in Arabidopsis (Golovkin and Reddy 1996; Wang and Brendel 2004), while potato may have multiple copies of U1-A (Ibrahim et al. 2001). Several yeast-specific proteins such as SNU71, SNU65/Prp42, SNU56, NAM8, Prp39, and Prp40 make the yeast U1 snRNP a more complex structure than its human counterpart (Gottschalk et al. 1998). Computational searches identified two homologs for each of Prp39 and Prp40 in Arabidopsis (Wang and Brendel 2004). The remaining proteins are apparently absent from the plant genome, indicating unique features in 5′-splice site recognition in plants.

Other snRNP-Specific Proteins in the Major Spliceosome

Similarity searches identified 23 U2, 14 U5, 10 U4/U6, and six U4/U6.U5 snRNP-specific protein-coding genes in the Arabidopsis genome (Wang and Brendel 2004). U2-A′ and U2-B″ from U2 snRNP were experimentally studied in plants (Simpson et al. 1995; Lorković et al. 2004). Potato U2-B″ can interact with human U2-A′ to enhance sequence-specific binding (Simpson et al. 1995). Similar to the cases in human and yeast, plant U2-B″ and U1-A (from U1 snRNP) are very similar to each other, with over 50% identity and 70% similarity between their protein sequences. Only one member of the U1A/U2B″ family (SNF) was found in *Drosophila melanogaster*, which can interact with both U1 and U2 snRNAs (Polycarpou-Schwarz et al. 1996). Functional redundancy was recently discovered between U1-A and U2-B″ in *Caenorhabditis elegans* (Saldi et al. 2007). In Arabidopsis, two copies of U2-B″ exist, with 80% identity and 90% similarity between their protein sequences. Both U2-B″ genes are expressed and can be alternatively spliced, increasing the complexity of this protein family two- to fourfold (Wang and Brendel 2004). Other proteins from these snRNPs are also highly conserved. A few genes, including atSF3a120/SAP114 (Prp21) from U2 snRNP, U5-116 KD (Snu14), U5-200 KD (Brr2), U4/U6-90 KD (Prp3), U4/U6-15.5 KD (Snu13), and tri-65 KD (Snu66), are duplicated multiple times in Arabidopsis (Wang and Brendel 2004). It is not known how the functions of these redundant proteins coordinate with each other in plants.
U11/U12 snRNP-Specific Proteins

Little is known about the protein composition of the minor spliceosome. The only purified snRNPs are 18S U11/U12 snRNP and 12S U11 snRNP in humans. Seven minor spliceosome specific proteins, all Sm core proteins, and seven subunits of heteromeric SF3b from U2 snRNP were identified from U11/U12 snRNP, but none of the U1 snRNP-specific proteins were detected (Will et al. 2004). Four (25KDa, 31KDa, 35KDa, and 65KDa) minor spliceosome proteins are present in the Arabidopsis genome, while the other three (20KDa, 48KDa, and 59KDa) are absent (Wang and Brendel 2004). Sequence similarity detected between At2g46200 and U11-59KD and between At3g04160 and U11-48K suggests they are possible orthologs (Lorković et al. 2005). The U11/U12-35 KD has strong sequence similarity and analogous function to U1-70K (Lorković et al. 2005). Contrasting with the duplication events in the major spliceosome, all minor spliceosome-specific genes exist as single copy. The Arabidopsis U11/U12-specific genes are highly conserved in rice, indicating a similar mechanism of splicing of AT-AC introns throughout plants (Lorković et al. 2005).

Splicing Factors

In a previous survey (Wang and Brendel 2004), splicing factors were divided into eight subgroups: splice site selection proteins; serine/arginine-rich (SR) proteins; 17S U2-associated proteins; 35S U5-associated proteins; B/A1U1 complex-specific proteins; exon junction complex (EJC) proteins; second-step splicing factors; and other known splicing factors. Here we focus on the first two subgroups because they are more thoroughly studied than other subgroups.

Proteins Involved in Splice Site Selection

Cap-Binding Proteins

The nuclear cap-binding complex (CBC) is required for effective spliceosome assembly and pre-mRNA splicing in both yeast and mammalian systems (Colot et al. 1996; Lewis et al. 1996a). More detailed experiments showed that CBC facilitates the recruitment of U1 snRNP to the 5'-splice site of the first intron in HeLa cell nuclear extracts (Lewis et al. 1996b). Two subunits of CBC in Arabidopsis [cap-binding proteins (CBP) AtCBP20 and AtCBP80] were identified and characterized (Kmieciak et al. 2002). Both AtCBP20 and AtCBP80 are single-copy genes in the Arabidopsis genome. AtCBP20 plays a role in ABA regulation and drought response (Papp et al. 2004). Another subunit, AtCBP80, is also called abscisic acid
(ABA) hypersensitive 1 (ABH1). Studies of several ABH1 mutants showed that ABH1 is a modulator in early ABA signal transduction (Hugouvieux et al. 2001) and acts in the flowering pathway (Bezerra et al. 2004; Kuhn et al. 2007) (see the chapter by J. M. Kuhn et al., this volume). Specifically, ABH1 may affect flowering time by influencing the splicing patterns of some flowering pathway genes. The intron-1-retaining transcripts of FLOWERING LOCUS C (FLC) accumulate in abh1-7 (Kuhn et al. 2007), suggesting that ABH1 may regulate FLC intron 1 removal. However, it is still unknown whether plant CBC, like its animal counterparts, facilitates the recognition of the 5′-splice site of the first intron by U1 snRNP.

U2 snRNP Auxiliary Factor

U2 snRNP Auxiliary Factor (U2AF) is a dimeric splicing factor with a small 35-kDa and a large 65-kDa subunit. In animals, the small subunit U2AF35 binds to the 3′-splice site (Merendino et al. 1999; Wu et al. 1999; Zorio and Blumenthal 1999). The large subunit U2AF65 binds to the polypyrimidine tract between the branchpoint and the 3′-splice site (Zamore et al. 1992). The bindings of U2AF help to bring U2 snRNP to the branchpoint (Ruskin et al. 1988). It is not well understood, however, how U2AF functions in plants.

Two isoforms of U2AF65, named U2AF65a and U2AF65b, have been identified in both *Nicotiana plumbaginifolia* (Tex-Mex tobacco) and Arabidopsis (Domon et al. 1998). U2AF65a localizes to the nucleus. Both proteins interact with plant introns and prefer binding to poly(U) instead of poly(G), poly(C), or poly(A) (Domon et al. 1998). The U-rich sequence in plants was shown to function as either polypyrimidine tract or splicing signal (Simpson et al. 2004). In addition, both plant isoforms can complement the lack of human U2AF65 in HeLa cell splicing extracts and stimulate splicing (Domon et al. 1998).

U2AF35 homologs are found in Arabidopsis, rice, maize, and other flowering plants (Domon et al. 1998; Wang and Brendel 2004, 2006b). Two homologs were identified in Arabidopsis, atU2AF35a and atU2AF35b, and both have nuclear localization. Altered levels of atU2AF35 cause the change of FLC expression level and FCA (FLOWERING TIME CONTROL PROTEIN) splicing pattern and thus lead to the change of flowering time (Wang and Brendel 2006b). Plants with altered levels of atU2AF35 also show other pleiotropic phenotypes. A widely conserved C-terminal motif (SERE) in seed plant U2AF35 homologs suggests that it may have plant-specific function (Wang and Brendel 2006b).

Serine/Arginine-Rich Proteins

The serine/arginine-rich (SR) proteins are essential in several steps of both constitutive and alternative splicing (see the chapters by A. Barta et al. and G. S. Ali and A. S. N. Reddy, this volume). All SR proteins are phosphoproteins. Typical characteristics...
Spliceosomal Proteins in Plants

of SR proteins include one or two N-terminal RNA recognition motifs (RRMs) and a C-terminal arginine/serine-rich (RS) domain (Kalyna and Barta 2004; Reddy 2004). During splice site recognition and spliceosome formation, the RRM recognizes and binds to particular exon and/or intron motifs, and the RS domain interacts with other proteins in the spliceosome. There are 11 and seven genes encoding SR proteins in human and Caenorhabditis elegans, respectively (Kalyna and Barta 2004), while there are many more plant SR genes, with at least 19 in Arabidopsis and 24 in rice (Iida and Go 2006; Isshiki et al. 2006; Reddy 2007). Some SR proteins are highly conserved, whereas others are species specific. The fact that both plant- and animal-specific SR proteins exist indicates that the mechanism of pre-mRNA splicing is different by some means in the two kingdoms.

Discovery of Plant SR Proteins

Plant SR proteins were discovered by various approaches. For example, the gene of the first plant SR protein, atSRp34/atSR1, was identified by searching Arabidopsis cDNAs for highly conserved RRMs in animal SR genes (Lazar et al. 1995). Similar approaches based on sequence similarity search were applied later to discover additional SR proteins along with other plant splicing factors (Lopato et al. 1996b, 1999a, 2002, 2006; Lorković and Barta 2002; Gao et al. 2004; Wang and Brendel 2004; Iida and Go 2006). Another approach was to isolate clones interacting with U1-70K or known SR proteins in yeast two-hybrid assays (Golovkin and Reddy 1998, 1999; Lopato et al. 2002, 2006). In the third approach, SR proteins were detected with human SF2/ASF-specific antibody and monoclonal antibody mAb104, which interacts with a shared phosphoepitope in all SR proteins (Lopato et al. 1996a, 1999b).

SR Proteins in Arabidopsis

Based on sequence similarities with human SR proteins, the 19 Arabidopsis SR proteins can be grouped into four families: SF2/ASF, SC35, 9G8, and plant-specific families (Wang and Brendel 2004). Four SR proteins, atSRp34/ atSR1, atSRp34a, atSRp34b, and atSRp30, have gene structures similar to human SF2/ASF. They have two N-terminal RRMs and a C-terminal RS domain. Unlike human SF2/ASF, all four of these SR proteins except atSRp30 have a PSK domain that is rich in proline, serine, and lysine (Reddy 2004). The splicing activity of atSRp34/atSR1 has been shown by its influence on alternative 5′-splice site selection in HeLa nuclear extract, which is comparable with the activity of human SF2/ASF (Lazar et al. 1995). Regulation of atSRp34/ atSR1 splicing is organ- and stage-specific and temperature-dependent but is not autoregulated (Lazar and Goodman 2000). Full-length atSRp34/ atSR1 mRNA is downregulated when another SR gene, atSRp30, is overexpressed (Lopato et al. 1999b). Overexpression of atSRp30 also changes alternative splicing of endogenous atRSp31, atSRp34/RS1, U1-70K, and its own pre-mRNA.
Transgenic plants overexpressing \textit{atSRp30} show pleiotropic phenotype changes including delayed flowering and larger flowers and rosette leaves (Lopato et al. 1999b).

The SC35 family comprises five SR proteins (\textit{atSC35}, \textit{atSR33/atSCL33}, \textit{atSCL30}, \textit{atSCL30a}, and \textit{atSCL28}). All of them have typical RRM and RS domains. In yeast two-hybrid assay and coprecipitation analysis, \textit{atSR33/atSCL33} was shown to interact with itself and \textit{atSR45}, a plant-specific SR protein, but not with \textit{atSRZ1} or \textit{atSRZ22} from the 9G8 family (Golovkin and Reddy 1999).

Proteins from the 9G8 family are similar to human 9G8 splicing factor. Three of them (\textit{atRSZp22/atSRZ22}, \textit{atRSZp22a}, and \textit{atRSZp21/atSRZ21}) have a glycine hinge and a CCHC-type zinc finger motif in between the RRM and RS domain. The other two members, \textit{atRSZ33} and \textit{atRSZ32}, each have two CCHC-type zinc fingers between the RRM and RS domain. \textit{atRSZ33} and \textit{atRSZ32} were shown to interact with themselves and \textit{atSR45}, a plant-specific SR protein, but not with \textit{atSRZ1} or \textit{atSRZ22} from the 9G8 family (Golovkin and Reddy 1999).

Proteins from the 9G8 family are similar to human 9G8 splicing factor. Three of them (\textit{atRSZp22/atSRZ22}, \textit{atRSZp22a}, and \textit{atRSZp21/atSRZ21}) have a glycine hinge and a CCHC-type zinc finger motif in between the RRM and RS domain. The other two members, \textit{atRSZ33} and \textit{atRSZ32}, each have two CCHC-type zinc fingers between the RRM and RS domain. \textit{atRSZ33} and \textit{atRSZ32} were shown to interact with themselves and \textit{atSR45}, a plant-specific SR protein, but not with \textit{atSRZ1} or \textit{atSRZ22} from the 9G8 family (Golovkin and Reddy 1999).

Proteins from the 9G8 family are similar to human 9G8 splicing factor. Three of them (\textit{atRSZp22/atSRZ22}, \textit{atRSZp22a}, and \textit{atRSZp21/atSRZ21}) have a glycine hinge and a CCHC-type zinc finger motif in between the RRM and RS domain. The other two members, \textit{atRSZ33} and \textit{atRSZ32}, each have two CCHC-type zinc fingers between the RRM and RS domain. \textit{atRSZ33} and \textit{atRSZ32} were shown to interact with themselves and \textit{atSR45}, a plant-specific SR protein, but not with \textit{atSRZ1} or \textit{atSRZ22} from the 9G8 family (Golovkin and Reddy 1999).

Proteins from the 9G8 family are similar to human 9G8 splicing factor. Three of them (\textit{atRSZp22/atSRZ22}, \textit{atRSZp22a}, and \textit{atRSZp21/atSRZ21}) have a glycine hinge and a CCHC-type zinc finger motif in between the RRM and RS domain. The other two members, \textit{atRSZ33} and \textit{atRSZ32}, each have two CCHC-type zinc fingers between the RRM and RS domain. \textit{atRSZ33} and \textit{atRSZ32} were shown to interact with themselves and \textit{atSR45}, a plant-specific SR protein, but not with \textit{atSRZ1} or \textit{atSRZ22} from the 9G8 family (Golovkin and Reddy 1999).

Five Arabidopsis SR proteins do not have animal counterparts and belong to the plant-specific family. \textit{atRSp41}, \textit{atRSp40/atSRp35}, \textit{atRSp32/atRSR31a}, and \textit{atRSp31} have two RRM and a C-terminal RS domain. Unlike all other plant SR proteins with only one RS domain, \textit{atSR45} has two RS domains separated by an RRM (Golovkin and Reddy 1999). Both \textit{atRSp31} and \textit{atSR45} can complement SR protein-deficient HeLa cell S100 extract and 9G8-depleted HeLa nuclear extract (Lopato et al. 1999a). In yeast two-hybrid screens and in vitro binding assays, \textit{atRSZ33} interacts with \textit{atRSZp21} and \textit{atRSZp22} from the same family, \textit{atSRp34/SR1} from the SF2/ASF family, and all five members of the SC35 family (Lopato et al. 2002).

SR Proteins in Other Plant Species

Many SR proteins from maize (\textit{Zea mays}), wheat (\textit{Triticum aestivum}), and rice (\textit{Oryza sativa}) have also been identified and characterized (Gao et al. 2004; Iida and Go 2006; Ishihi et al. 2006; Lopato et al. 2006). There are at least three SF2/ASF-like SR proteins in maize (\textit{zmSRp30}, \textit{zmSRp31}, and \textit{zmSRp32}) (Gao et al. 2004). They show strong structural similarity to Arabidopsis \textit{atSRp34/SR1} and \textit{atSRp30}. Like \textit{atSRp34/SR1}, all three maize SR genes are alternatively spliced. Overexpression of \textit{zmSRp32} in transiently transformed maize BMS cells enhances the selection of a weak 5'-splice site. In wheat, two SR proteins, \textit{taRSZ38} and \textit{taRSZ38a}, have high similarity to Arabidopsis \textit{atRSZ33}, a 9G8 family protein (Lopato et al. 2006). Additional wheat proteins involved in pre-mRNA splicing were identified with the yeast two-hybrid system by using \textit{taRSZ38} and several subsequent positive clones as baits. Among the resulting proteins are \textit{taU1-70K}, \textit{taU2AF^65}, \textit{taU2AF^35}, and a number of SR proteins (taSRp30,
Spliceosomal Proteins in Plants taSRp30a, taRSZ22, and taRSZ22a) (Lopato et al. 2006). To date, 24 rice SR proteins have been found; four of them are homologs of the Arabidopsis plant-specific family (Iida and Go 2006; Isshiki et al. 2006). Several rice SR genes undergo alternative splicing events, some of which are conserved between Arabidopsis and rice (see below) (Iida and Go 2006; Kalyna et al. 2006). Transient assays in rice Oc cell protoplasts indicate that osRSp29 and osRSZp23 enhance splicing and favor different 5'-splice sites of the same intronic region (Isshiki et al. 2006). Domain-swapping experiments show that the first RRM is essential for osRSp29’s efficient splicing activity (Isshiki et al. 2006). Overexpression of osRSZ36 in transgenic rice changes its own RNA’s splicing pattern, suggesting a feedback regulation. Overexpression of osSRp33b alters the splicing of osSRp33a and osSRp32 pre-mRNAs (Isshiki et al. 2006).

Conserved Alternative Splicing of Plant SR Genes

Alternative splicing is observed for 15 of the 19 Arabidopsis SR genes, from which about 95 transcripts are produced (Palusa et al. 2007). This greatly increases the flexibility and complexity of the spliceosome. Seventeen of the 24 rice SR genes are subjected to alternative splicing as well (Iida and Go 2006). Alternative splicing events also occur in some SR genes from other plant species (see above). The observation that some events are conserved among SR homologs from different plant species (Iida and Go 2006; Kalyna et al. 2006) highlights the importance of alternative splicing in plant SR gene transcripts.

Studies reveal that long introns (>400 nt) are present in most (12 of 19) Arabidopsis SR genes, and these long introns are alternatively spliced in nine of such genes (Kalyna and Barta 2004). This is remarkable considering that the average length of Arabidopsis intron is 173 nt (Reddy 2007) and about 22% of the genes in Arabidopsis are alternatively spliced (Wang and Brendel 2006a). More detailed analyses show that the alternatively spliced long introns are also found in rice, maize, gymnosperms, moss (Physcomitrella patens), and green alga (Chlamydomonas reinhardtii) transcripts encoding SR proteins (Iida and Go 2006; Kalyna et al. 2006). These alternatively spliced long introns are located in the RRM-encoded regions, resulting in mRNAs encoding SR proteins with partial RRMs. Such conserved alternative splicing events are found in the plant-specific and SC35 families and the 9G8 members with two zinc knuckles (Iida and Go 2006; Kalyna et al. 2006) and may be critical to splicing regulation.

Regulation of Splicing in Plants

Splicing is a dynamic process affecting the expression of all intron-containing genes. Recent studies revealed that 20%–30% expressed genes are alternatively spliced in Arabidopsis and rice, demonstrating the critical roles of splicing in
gene expression (Campbell et al. 2006; Wang and Brendel 2006a). Splicing must therefore be tightly regulated to ensure accuracy and efficiency. Many proteins are involved in splicing regulation. Some proteins can assist and promote splicing, while others may have a negative effect. We defined proteins assisting splicing as splicing factors, such as SR proteins and U2AF, which were discussed in the previous section. Other proteins that can either modify splicing factors or have negative effect on splicing were defined as splicing regulators (Wang and Brendel 2004). Nevertheless, this classification is tentative, and sometimes it is hard to define clearly whether a protein is a splicing factor or a splicing regulator.

The main difference in splicing-related genes between mammals and plants is the expansion of splicing regulators in plants (Wang and Brendel 2004). One type of splicing regulator is hnRNP protein, which can bind to pre-mRNA and block the binding site for splicing factors (Wang and Brendel 2004). PTB/hnRNP I, for instance, can compete with the U2AF large subunit for the polypyrimidine tract of introns (Lin and Patton 1995). Three homologs of PTB/hnRNP I were identified in Arabidopsis (Wang and Brendel 2004). Moreover, a family of 21 glycine-rich RNA binding proteins were identified in Arabidopsis as homologs of human hnRNP A1 and hnRNP A2/B1 (Wang and Brendel 2004). Five of these genes were also experimentally identified, including AtGRP7, AtGRP8, and three UBA2 homologs (Heintzen et al. 1994; Lambermon et al. 2002). AtGRP7 can influence alternative splicing of its own transcripts as well as AtGRP8 transcripts (Staiger et al. 2003). UBA2 proteins can interact with UBP1 and UBA1 proteins to recognize U-rich sequences (Lambermon et al. 2002). Homologs for other hnRNP proteins such as hnRNP F and CUG-BP were also identified in Arabidopsis (Lorković and Barta 2002; Wang and Brendel 2004). In addition, 15 hnRNP-like proteins were identified in Arabidopsis, possibly representing the plant-specific hnRNPs (Lambermon et al. 2000; Lorković et al. 2000a; Landsberger et al. 2002; Wang and Brendel 2004). The UBP1 proteins can strongly enhance splicing of some introns in protoplasts (Lambermon et al. 2000), whereas UBA1, RBP45, and RBP47 proteins have no such function reported (Lorković et al. 2000a; Landsberger et al. 2002).

SR protein kinase is another type of splicing regulator (see the chapter by R. Fluhr, this volume). By phosphorylating SR proteins, SR protein kinase can modulate splicing in both constitutive and alternative splicing (reviewed in Stojdl and Bell 1999). Sequences of SR protein kinases are highly conserved in plants, suggesting the critical function of these proteins. Eight homologs corresponding to three mammalian SR protein kinases, including Lammer/CLK kinases, SRPK1, and SPRK2, were identified in Arabidopsis (Wang and Brendel 2004). Lammer/CLK kinases were proven to phosphorylate SR proteins in vitro in plants (Golovkin and Reddy 1999; Savaldi-Goldstein et al. 2000). Overexpression of one tobacco Lammer/CLK kinase homolog, PK12, causes alternative splicing pattern changes in several genes, including U1-70K and two SR proteins, atSRp30 and atSR1/atSRp34 (Savaldi-Goldstein et al. 2003). Connections between splicing and other SR protein kinase are yet to be established.
In addition to proteins, many other factors may affect splicing, either directly or indirectly. For instance, cis-elements in pre-mRNAs are critical for the spliceosome to define and remove introns correctly. Hormones, such as ABA and IAA, can change the alternative splicing pattern in three SR genes in Arabidopsis (Palusa et al. 2007). Ethylene can induce the expression of SR protein kinase PK12 in tobacco (Savaldi-Goldstein et al. 2000). Environmental factors, such as heat, cold, and salt, have dramatic effects on the alternative splicing pattern of several SR genes (Palusa et al. 2007). Light can also regulate the expression of some splicing-related genes (Heintzen et al. 1994). Detailed discussion of these regulators is beyond the scope of this chapter. It is clear that plants developed specific regulatory mechanisms to control the largely conserved splicing machinery when adapting to their environments.

Conclusion and Perspective

The complex interactions of pre-mRNA, snRNAs, and spliceosomal proteins in pre-mRNA processing are critical to the accurate expression of a eukaryotic genome. It has become clear that while the core molecular entities involved in these processes are conserved throughout the animal and plant kingdoms, there are also distinct proteins that participate in splicing in plants. Much less clear is the extent to which these proteins are conserved among different phylogenetic groups of plants, and very little is known about how distinct proteins influence processing of particular pre-mRNAs and determine alternative splicing choices, for example. A recent study identified 84 putative exonic splicing enhancer motifs, of which 35 were experimentally shown to promote splicing (Pertea et al. 2007). In the years ahead it will be fascinating to correlate such motifs with specific (SR) proteins that recognize them and to seek understanding of how these proteins interact with the core constituents of the spliceosome. Proteomics studies of isolated plant spliceosomes may be key to progress toward these goals.

Acknowledgements Y. R. and V. B. were supported in part by National Science Foundation Grant DBI-0606909. B.-B. W. was supported by National Science Foundation Grants DBI-0321460 and DBI-0606966.

References

Spliceosomal Proteins in Plants

Nuclear pre-mRNA Processing in Plants
Reddy, A.S.N.; Golovkin, M.V. (Eds.)
2008, XIII, 321 p., Hardcover
ISBN: 978-3-540-76775-6