Contents

Abbreviations ... xxv

1 Introduction to Nerve Cells and Nervous Systems 1
 The Nervous System and Control 1
 The Nervous System and Communication 2
 Nerve Cells .. 2
 The Generalised Neuron ... 3
 The Anatomy of Neurons .. 6
 The Neuroglia .. 9
 The General Plan of Nervous Systems 10
 Regulation of the External Environment of Neurons 12
 Summary ... 14

2 The Cell Membrane: Ionic Permeability and Electrotonic Properties 15
 The Structure of Cell Membranes 15
 Non-gated Channels and the Resting Membrane Potential 16
 Resting Potential of an Ideal Cell 17
 Electrotonic Properties of Nerve Cells 22
 Summary ... 25

3 The Action Potential and the Nerve Impulse 27
 Electrically Excitable Cells .. 27
 Ionic Basis of Action Potentials in Nerve Fibres 27
 Voltage-Clamp Experiments .. 30
 The Initial Inward Current Is Due To Movement of Na+ 32
 The Later Outward Current Is Due To Movement of K+ 32
 The Inward and Outward Currents Can Be Separated by Drugs ... 32
 The Separate Na+ and K+ Conductances Can Be Determined 34
 Na+ Inactivation Is a Distinct Process 34
 Action Potential Shape and Propagation Can Be Predicted on a
 Theoretical Basis ... 35
 Changes in Internal Ion Concentrations Due to the Action Potential .. 35
 Summary of the Action Potential 36
 The Nerve Impulse ... 36
 Local Circuits .. 37
 Effect of Axon Diameter on Conduction Velocity 37
 Myelination and Saltatory Conduction 38
 Voltage-Gated Channels and Impulse Propagation 39
The Length of Axon Involved in a Nerve Impulse .. 39
Extracellular Field Potentials ... 40
Extracellular Recording from a Single Axon .. 40
Extracellular Recording from a Nerve Bundle – The Compound Action
Potential .. 40
Classification of Nerve Fibres ... 42
Summary ... 43

4 Voltage-Gated Ion Channels in Excitable Membranes 45
Voltage-Gated Na\(^+\) Channels ... 45
The Voltage-Gated Na\(^+\) Channel Responsible for \(I_{\text{Na,t}}\) the Transient
Rapidly Activating and Inactivating Na\(^+\) Current 45
A Voltage-Gated Na\(^+\) Channel Responsible for a Persistent
Na\(^+\) Current \((I_{\text{Na,p}})\) ... 50
Voltage-Gated K\(^+\) Channels .. 50
The Voltage-Gated K\(^+\) Channel Responsible for the Delayed Rectifying
Current \((I_{\text{k}})\) .. 51
Voltage-Gated K\(^+\) Channels Responsible for the A Current \((I_{\text{a}})\) 51
Voltage-Gated K\(^+\) Channel Responsible for the M Current \((I_{\text{m}})\) 51
Voltage-Gated Ca\(^{2+}\) Channels ... 51
Summary ... 53

5 General Properties of Intercellular Communication in the Nervous System 55
Electrical Synaptic Transmission .. 55
Excitatory Electrical Transmission .. 56
Inhibitory Electrical Transmission .. 58
Chemical Synaptic Transmission .. 58
General Outline of Chemical Synaptic Transmission 60
Summary ... 61

6 The Presynaptic Neuron I: Release of Neurotransmitter 63
Role of Ca\(^{2+}\) in Transmitter Release ... 63
Release of Transmitter in Packets or Quanta ... 65
Quantal Content .. 67
Molecular Mechanisms Involved in Transmitter Release 70
Vesicle Manufacture ... 70
Transmitter Release: Vesicle Docking, Fusion and Exocytosis 71
Vesicle Endocytosis and Recycling .. 72
Role of Ca\(^{2+}\) in Molecular Mechanisms of Release 72
Changes in Synaptic Efficacy Due to Presynaptic Mechanisms 73
Presynaptic Inhibition ... 73
Summary ... 73

7 The Presynaptic Neuron II: Neurotransmitters 75
Definition and Identification of Transmitters .. 75
Classification of Transmitters .. 76
Low-molecular-weight Transmitters ... 76
Neuroactive Peptides ... 80
Adenosine triphosphate (ATP) ... 82
Unconventional Transmitters ... 82
Some General Principles About Transmitters 85
Some Transmitters Appear To Be Either Excitatory or Inhibitory but
Not Both ... 85
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some Transmitters May Have Either Excitatory or Inhibitory Actions</td>
<td>85</td>
</tr>
<tr>
<td>Many Neurons Contain Several Transmitters</td>
<td>85</td>
</tr>
<tr>
<td>A Single Neuron May Release More Than One Transmitter</td>
<td>85</td>
</tr>
<tr>
<td>Some Neuronal Systems Containing Particular Transmitters Have Very</td>
<td>85</td>
</tr>
<tr>
<td>Wide-ranging Actions in the Brain</td>
<td>85</td>
</tr>
<tr>
<td>Summary</td>
<td>85</td>
</tr>
<tr>
<td>8 The Postsynaptic Neuron I: Actions of Neurotransmitters</td>
<td>87</td>
</tr>
<tr>
<td>Postsynaptic Receptors</td>
<td>87</td>
</tr>
<tr>
<td>Ionotropic Receptors</td>
<td>87</td>
</tr>
<tr>
<td>Metabotropic Receptors</td>
<td>90</td>
</tr>
<tr>
<td>Consequences of Transmitter-Receptor Combination</td>
<td>90</td>
</tr>
<tr>
<td>Actions at Ionotropic Receptors</td>
<td>90</td>
</tr>
<tr>
<td>Actions at Metabotropic Receptors</td>
<td>96</td>
</tr>
<tr>
<td>Summary</td>
<td>99</td>
</tr>
<tr>
<td>9 The Postsynaptic Neuron II: The Neuron as an Integrative Device</td>
<td>101</td>
</tr>
<tr>
<td>Neuron Doctrine and the Law of Dynamic Polarisation</td>
<td>101</td>
</tr>
<tr>
<td>The Generalised Neuron Concept</td>
<td>101</td>
</tr>
<tr>
<td>The Generalised Neuron as a Model for the Mammalian Motoneuron</td>
<td>102</td>
</tr>
<tr>
<td>The Generalised Neuron as a Model for Other Neurons</td>
<td>107</td>
</tr>
<tr>
<td>Synapses on Axon Terminals – Axo-axonic Synapses</td>
<td>108</td>
</tr>
<tr>
<td>Impulses in Dendrites</td>
<td>109</td>
</tr>
<tr>
<td>Dendritic Spines</td>
<td>113</td>
</tr>
<tr>
<td>The Importance of Synaptic Location</td>
<td>114</td>
</tr>
<tr>
<td>Excitatory Synaptic Location on Motoneurons</td>
<td>114</td>
</tr>
<tr>
<td>Inhibitory Synapses</td>
<td>115</td>
</tr>
<tr>
<td>Consequences of Synaptic Location Specificity</td>
<td>116</td>
</tr>
<tr>
<td>Summary</td>
<td>116</td>
</tr>
<tr>
<td>10 Transmission Between Pairs of Identified Neurons</td>
<td>119</td>
</tr>
<tr>
<td>Transmission Between Ia Afferent Fibres from Muscle Spindles and</td>
<td>119</td>
</tr>
<tr>
<td>Spinal α-Motoneurons</td>
<td>119</td>
</tr>
<tr>
<td>Anatomy of the Ia–α-Motoneuron System</td>
<td>120</td>
</tr>
<tr>
<td>Ia Afferent Fibres</td>
<td>121</td>
</tr>
<tr>
<td>Ia Afferent Contacts upon Motoneurons</td>
<td>121</td>
</tr>
<tr>
<td>Actions of Ia Afferent Fibres on α-Motoneurons</td>
<td>121</td>
</tr>
<tr>
<td>Transmission Between Cutaneous Afferent Fibres and Neurons of</td>
<td>125</td>
</tr>
<tr>
<td>Somatosensory Pathways</td>
<td>125</td>
</tr>
<tr>
<td>Transmission Between Hair Follicle Afferent Fibres and Spinocervical</td>
<td>125</td>
</tr>
<tr>
<td>Tract Neurons</td>
<td>125</td>
</tr>
<tr>
<td>Transmission Between Cutaneous Afferent Fibres and Neurons of the</td>
<td>128</td>
</tr>
<tr>
<td>Dorsal Column Nuclei</td>
<td>128</td>
</tr>
<tr>
<td>Summary</td>
<td>128</td>
</tr>
<tr>
<td>11 Sense Organ Mechanisms</td>
<td>131</td>
</tr>
<tr>
<td>Sense Organ Specificity</td>
<td>131</td>
</tr>
<tr>
<td>Sensory Transduction Mechanisms</td>
<td>132</td>
</tr>
<tr>
<td>Mechanoreceptors</td>
<td>132</td>
</tr>
<tr>
<td>Vertebrate Photoreceptors</td>
<td>134</td>
</tr>
<tr>
<td>Adaptation of Sensory Signals</td>
<td>138</td>
</tr>
<tr>
<td>Stimulus Encoding</td>
<td>139</td>
</tr>
<tr>
<td>Dynamic and Static Components of the Response</td>
<td>140</td>
</tr>
</tbody>
</table>
Contents

15 The Nervous System and the Internal and External Environments –

Homeostasis and Interactions 197
- The Neuroendocrine System .. 197
- The Magnocellular Neurosecretory System 198
- The Parvocellular Neurosecretory System 200
- Circadian Rhythms .. 201
 - The Photoreceptive System 201
 - The Suprachiasmatic Nucleus 201
 - Output Systems from the Suprachiasmatic Nucleus 201
- Behavioural State – Sleeping and Waking 201
 - Sleeping and Waking ... 201
- Motivational Behaviour .. 205
 - Non-Specific Activation 205
 - Homeostasis and Motivational Behaviour 206
- Control of Nociception ... 209
 - Segmental Control of Nociceptive Input 209
 - Descending Control of Nociception 209
- Interactions with Other Organisms 210
 - Animal Communication .. 210
 - Human Language .. 212
- Summary .. 212

16 Formation, Maintenance and Plasticity of Synapses 215
 - Development of the Nervous System 215
 - Determination of Nervous Tissue 215
 - Cell Differentiation .. 217
 - Synapse Formation and the Maintenance of Connections 219
 - Formation of the Neuromuscular Junction 219
 - Synapse Elimination .. 221
 - Formation of Synaptic Connections in the Visual System 222
 - Matching of Neuronal Populations 223
 - Programmed Cell Death and Nerve Growth Factor 224
 - Effects of Denervation in the Adult Central Nervous System 226
 - Abnormal Experience and the Formation of Synaptic Connections –
 - Critical Periods .. 226
- Summary .. 229

17 Learning and Memory .. 231
 - Forms of Learning and Memory 231
 - Cellular Mechanisms of Learning and Memory in Invertebrates 232
 - Non-associative Learning: Habituation and Sensitisation 232
 - Associative Learning in Invertebrates: Classical Conditioning 234
 - Cellular Mechanisms of Learning in Vertebrates 234
 - Mechanisms Underlying Long-Term Potentiation in the Hippocampus 234
 - Long-Term Depression in the Cerebellum 236
 - Learning and Memory in Humans 236
 - The Major Memory Systems 237
- Summary .. 237

References ... 239
Index ... 249
Nerve Cells and Nervous Systems
An Introduction to Neuroscience
Brown, A.G.
2001, XVI, 253 p. 134 illus., Softcover
ISBN: 978-3-540-76090-0