Contents

1 Planetary Systems ... 1
 1.1 Introduction .. 1
 1.2 The Plurality of Worlds: A Question as Old as the Hills 1
 1.2.1 From Antiquity to the Copernican Revolution 1
 1.2.2 The First Theories on the Formation of the World 3
 1.3 First Searches for Other Worlds 5
 1.3.1 The First Astrometric Searches 6
 1.3.2 The Velocimetry Method 6
 1.3.3 The First Results and the Problems Raised 9
 1.3.4 Planets Around Pulsars 10
 1.3.5 The Search for Protoplanetary Disks 12
 1.4.1 The Sun as an Average Star 14
 1.4.2 Brown Dwarfs: Between Stars and Planets 15
 1.4.3 A Specific Planetary System: The Solar System 15
 1.4.4 The Formation of the Planets by Nucleation 15
 1.4.5 Terrestrial and Giant Planets 18
Bibliography ... 20

2 Detection Methods ... 21
 2.1 The Extent of the Problem .. 21
 2.1.1 Contrast Between Star and Planet 21
 2.1.2 Angular Separation Between the Objects 22
 2.1.3 Environment of the Earth and Exoplanets 23
 2.2 The Indirect Detection of Exoplanets 24
 2.2.1 The Effect of a Planet on the Motion of Its Star 24
 2.2.2 The Effect a Planet has on Photometry of Its Star 36
 2.2.3 Comparison of the Different Indirect Methods 46
 2.3 Direct Detection of Exoplanets 46
 2.3.1 Choice of Spectral Region 47
 2.3.2 Coronagraphic Methods and Adaptive Optics 48
3 Extrasolar Planets, 12 Years After the First Discovery

3.1 Exoplanets and Exoplanetary Systems

3.2 The Mass-Distribution of Exoplanets

3.3 The Distance-Distribution of Exoplanets

3.4 The Relationship Between the Mass of Exoplanets and Their Distance from Their Star

3.5 Orbital Eccentricity Among Exoplanets

3.6 Exoplanets and Their Parent Stars

3.7 Mass/Diameter Ratio

3.8 Characteristics of Extrasolar Planetary Atmospheres

Bibliography

4 What we Learn from the Solar System

4.1 Observational Methods

4.2 The Observational Data

4.2.1 Orbits that are Essentially Co-Planar and Concentric

4.2.2 Terrestrial Planets and Giant Planets

4.2.3 The Small Bodies

4.2.4 Dating the Solar System Through Radioactive Decay

4.3 The Emergence of a ‘Standard Model’

4.3.1 The Nebular Theory

4.3.2 The Standard Model: The Chronology of Events

4.4 The Physical and Chemical Properties of Solar-System Objects

4.4.1 The Electromagnetic Spectrum of the Objects in the Solar System

4.4.2 Planetary Atmospheres

4.4.3 The Terrestrial Planets

4.4.4 The Giant Planets

4.4.5 Rings and Satellites in the Outer Solar System

4.4.6 Small Bodies in the Solar System

4.5 Conclusions: The Solar System Compared with Other Planetary Systems

4.5.1 The Scenario for the Formation of the Solar System

4.5.2 Objects in the Planetary Systems Observable from Earth

Bibliography

5 Star Formation and Protoplanetary Disks

5.1 The First Stages in Star Formation

5.1.1 Properties of the Interstellar Medium

5.1.2 The Formation of Molecular Clouds
5.1.3 Collapse of a Molecular Cloud 136
5.1.4 Observation of Young Stars 136

5.2 Structure and Evolution of Protoplanetary Disks 139
5.2.1 Observation of Protoplanetary Disks 139
5.2.2 Stellar Accretion Flux .. 142
5.2.3 The Rotation of T-Tauri Stars 143
5.2.4 The Formation of Binary Systems 144
5.2.5 The Principal Stages of Star Formation 145
5.2.6 Later Stages of Stellar Evolution: Evolution
Towards the Main Sequence ... 149
5.2.7 The Structure of Protoplanetary Disks 151
5.2.8 Composition of the Gas and Dust 155

5.3 Planetary Disks and Debris Disks 156
5.3.1 Observation of the Disk of HR 4796A 157
5.3.2 Observation of the Disk of β Pic 158

5.4 The Formation of Planetesimals and Planetary Embryos 161
5.4.1 From Microscopic Particles to Centimetre-Sized Grains .. 161
5.4.2 From Centimetre-Sized Grains to Kilometre-Sized Bodies 162
5.4.3 From Protoplanets to Planets 163

Bibliography ... 165

6 The Dynamics of Planetary Systems 169
6.1 Characteristics of the Orbits 169
6.1.1 Calculation of Radial Velocities 169
6.1.2 Orbital Characteristics from Radial-Velocity Curves 170
6.1.3 Multiple Systems Case .. 172
6.1.4 Exoplanets and Known Multiple Systems 173
6.1.5 Rotation of the Planets .. 176

6.2 Migration .. 177
6.2.1 Migration in the Solar System 177
6.2.2 Migration in Exosystems ... 179
6.2.3 The Different Migration Mechanisms 180
6.2.4 Observational Indications 182
6.2.5 The End of the Migration and Tidal Effects 184

6.3 Stability of Planetary Systems 185
6.3.1 Dynamical Categories .. 185
6.3.2 The GJ 876 System .. 187
6.3.3 The HD 82943 System .. 188
6.3.4 The ν Andromedae System 188
6.3.5 The HD 202206 System: A Circumbinary Planet? 189
6.3.6 The HD 69830 System: Three Neptunes and a Ring of Dust 191

6.4 Planetary Systems Around Pulsars 191

6.5 The Dynamics of Debris Disks 193

Bibliography ... 196
7 Structure and Evolution of an Exoplanet .. 197
 7.1 The Internal Structure of Giant Exoplanets 198
 7.1.1 The Observable Features .. 198
 7.1.2 The Equations of Internal Structure 199
 7.1.3 Rotation Effects .. 201
 7.1.4 Equations of State .. 201
 7.1.5 Construction of Models of Internal Structure 203
 7.1.6 Evolutionary Models .. 206
 7.2 The Internal Structure of Terrestrial-Type Exoplanets and Ocean Planets 208
 7.2.1 Terrestrial-Type Exoplanets 209
 7.2.2 Ocean Planets ... 211
 7.3 The Atmospheres of Exoplanets: Their Structure, Evolution and Spectral Characteristics 214
 7.3.1 Giant Exoplanets .. 214
 7.3.2 Terrestrial Planets and Habitable Planets 225
 7.3.3 Hot Neptunes, Super-Earths, and Ocean Planets 239

Bibliography ... 242

8 Present and Future Instrumental Projects .. 245
 8.1 Indirect Methods of Detection .. 246
 8.1.1 Velocimetry ... 246
 8.1.2 Astrometry ... 250
 8.1.3 The Study of Planetary Transits 255
 8.1.4 Searching for Microlensing Events 266
 8.2 Direct Methods of Detection ... 270
 8.2.1 Imaging .. 270
 8.2.2 Interferometry .. 279
 8.2.3 Direct Detection of Radio Waves 288

Bibliography ... 291

9 The Search for Life in Planetary Systems ... 293
 9.1 What is Life? .. 293
 9.1.1 How Should Life be Defined? 293
 9.1.2 The Role of Carbon and of Liquid Water 294
 9.1.3 The Building-Block of Life: Macromolecules 296
 9.1.4 Nucleic Acids .. 297
 9.1.5 The Role of the Cell .. 298
 9.2 Prebiotic Material in the Universe .. 299
 9.2.1 Organic Material in the Universe 299
 9.2.2 The Synthesis of Organic Molecules: Miller and Urey’s Experiment 301
 9.2.3 Transport of Complex Organic Molecules to the Primordial Earth 303
 9.3 Stages on the Road to Complexity .. 306
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.1</td>
<td>Polymers and Macromolecules</td>
<td>306</td>
</tr>
<tr>
<td>9.3.2</td>
<td>The Formation of Membranes</td>
<td>307</td>
</tr>
<tr>
<td>9.3.3</td>
<td>RNA and DNA</td>
<td>307</td>
</tr>
<tr>
<td>9.4</td>
<td>The Appearance of Life on the Primitive Earth</td>
<td>308</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Favourable Conditions</td>
<td>308</td>
</tr>
<tr>
<td>9.4.2</td>
<td>The Environment of the Primitive Earth: The Hydrosphere and Atmosphere</td>
<td>309</td>
</tr>
<tr>
<td>9.5</td>
<td>The Search for Habitable Locations in the Solar System</td>
<td>311</td>
</tr>
<tr>
<td>9.5.1</td>
<td>The Planet Mars</td>
<td>311</td>
</tr>
<tr>
<td>9.5.2</td>
<td>The Satellites of the Outer Planets</td>
<td>315</td>
</tr>
<tr>
<td>9.6</td>
<td>The Search for Life on Exoplanets</td>
<td>319</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Exoplanets’ Habitable Zones</td>
<td>319</td>
</tr>
<tr>
<td>9.6.2</td>
<td>How May Life on an Exoplanet be Detected?</td>
<td>321</td>
</tr>
<tr>
<td>9.7</td>
<td>The Search for Extraterrestrial Civilisations</td>
<td>324</td>
</tr>
<tr>
<td>9.7.1</td>
<td>The Drake and Sagan Equation</td>
<td>324</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Communication by Radio Waves</td>
<td>325</td>
</tr>
<tr>
<td>9.7.3</td>
<td>The State of SETI and CETI Searches</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>327</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Star or Planet?</td>
<td>329</td>
</tr>
<tr>
<td>A.1</td>
<td>Gravitation and Kepler’s Laws</td>
<td>330</td>
</tr>
<tr>
<td>A.3</td>
<td>The Hertzsprung-Russell Diagram and the Spectral Classification of Stars</td>
<td>332</td>
</tr>
<tr>
<td>A.5</td>
<td>Resonances</td>
<td>334</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>337</td>
</tr>
</tbody>
</table>
Planetary Systems
Detection, Formation and Habitability of Extrasolar Planets
Ollivier, M.; Encrenaz, T.; Roques, F.; Selsis, F.; Casoli, F.
2009, XIII, 344 p., Hardcover
ISBN: 978-3-540-75747-4