Contents

Introduction .. 1

1 Fundamentals of Clay Mineral Crystal Structure and Physicochemical Properties .. 3
 Introduction .. 3
 1.1 The Common Structure of Phyllosilicates .. 3
 1.1.1 From Atomic Sheets to Layers ... 4
 1.1.2 Negatively Charged Layers ... 8
 1.1.3 The Different Layer-to-Layer Chemical Bonds ... 10
 1.2 Polytypes and Mixed Layer Minerals ... 11
 1.2.1 Layers of Identical Composition: Polytypes ... 11
 1.2.2 Layers of Different Composition: Mixed Layer Minerals 13
 1.3 Crystallites – Particles – Aggregates ... 15
 1.3.1 Crystallites: The Limit of the Mineralogical Definition 15
 1.3.2 Particles and Aggregates ... 16
 1.4 The Principal Clay Mineral Species ... 17
 1.4.1 The Cation Substitutions .. 17
 1.4.2 The Principal Mineral Species of the 1:1 Phyllosilicate Group 19
 1.4.3 Principal Mineral Species of the 2:1 Phyllosilicates Group without Interlayer Sheet ... 20
 1.4.4 The 2:1 Phyllosilicates with an Interlayer Ion Sheet (Micas) 21
 1.4.5 Phyllosilicates with a Brucite-type Interlayer Sheet (2:1:1) 23
 1.4.6 The Fibrous Clay Minerals: Sepiolite and Palygorskite 25
 1.5 Typical Properties of Intermediate Charge Clay Minerals 26
 1.5.1 Hydration and Swelling ... 26
 1.5.2 The Crystallite Outer Surfaces .. 28
 1.5.3 The Ion Exchange Capacity .. 30
 1.6 Particularities of Clay Minerals: Size and Continuity 34
 1.6.1 Clay Minerals are always Small .. 34
 1.6.2 The Reduced Number of Layers in the Stacks .. 37
 Typical of Clay Minerals ... 37
 1.6.3 From Order-Disorder to Crystal Defects .. 38
 1.6.4 Composition Heterogeneity at the Scale of a Single Layer 41
 1.7 How Do Clay Minerals Grow? ... 46
 1.7.1 Phyllosilicate Growth Principles .. 46
1.7.2 Speculative Interpretation of Growth Processes –
Crystal Morphology Relations .. 50
1.7.3 Nucleation Processes in Clay-Bearing Rocks 53
1.8 Summary: Clay Minerals in Soils and Weathered Rocks 56
1.8.1 The 2:1 Clay Structure and Its Importance in Soils 56
1.8.2 The Illitic Minerals in Soils and Weathered Rocks 57
1.8.3 Expandable Minerals (Sectites – Vermiculites) 61
1.8.4 Hydroxy Interlayered Minerals 62
1.8.5 Mixed Layer Minerals in Soils 67
1.8.6 Kaolinite and Kaolinite/Smectite Mixed Layer Minerals (K/S) 68
1.8.7 Allophane and Imogolite .. 69
1.8.8 The Non-Phyllosilicate Minerals in Soils and Weathered Rocks 71
1.8.9 Stability of Clay Minerals Formed under
Weathering Conditions .. 73
Suggested Reading .. 73

2 Basics for the Study of Soil and Weathered Rock
Geochemical Systems .. 75
Introduction ... 75
2.1 Definition of the Systems .. 76
2.1.1 The Size of the Systems under Consideration 76
2.1.2 The Solutions in Systems of Different Size 87
2.2 The Physicochemical Forces Acting in the Systems 91
2.2.1 Basic Definitions .. 91
2.2.2 The Chemical Potential .. 94
2.2.3 A Particular Chemical Potential: The pH 99
2.2.4 The Oxidation-Reduction Potential (Redox) 105
2.3 Mineral Reactions in Alteration Systems 108
2.3.1 Conditions at Equilibrium 108
2.3.2 kinetics of Alteration Reactions 110
Suggested Reading .. 111

3 The Development of Soils and Weathering Profile 113
Introduction ... 113
3.1 Physical Description of Soils and Weathering Profiles 114
3.1.1 The Development of Weathering Profiles 114
3.1.2 The Development of Soils 118
3.1.3 Conclusion in a YES or NO Question Series 122
3.2 Dynamics of the Alteration Process under Temperate Conditions:
An Investigation Comparing Soil and Rock Alteration in Profiles 123
3.2.1 Alteration in Temperate Climates 123
3.2.2 kineticsof Alteration Processes 125
3.2.3 Kinetics of Soil Formation 127
3.3 The Inter-Relation of the Dynamics of the
Alteration-Soil Profile Sequence 132
3.3.1 Overview of Soil and Weathering Mineralogy 132
3.3.2 The Mineralogy of Soil Horizons 134
3.3.3 Mineralogical and Chemical Differences between Alteration and Soil Zones .. 135
3.4 What Are the Clay Mineral Assemblages? ... 137
 3.4.1 Formation of Different Clay Mineral Phases in A Horizon 137
 3.4.2 General Schema of Alteration Zone and Soil Relations ... 140
 3.4.3 Overview of Alteration in the Soil Zone in Temperate Climates 142
Suggested Reading ... 142

4 Clay Mineral Formation in Weathered Rocks: Water–Rock Interaction ... 143
 Introduction ... 143
 4.1 Weathered Rock Profiles in Temperate Climates .. 144
 4.1.1 Weathering at the Landscape Scale .. 144
 4.1.2 The Parent Rock Control on Weathering Profiles .. 147
 4.1.3 The Climate Control on Weathering Profiles .. 152
 4.1.4 From Macro- to Microscopic Scale ... 155
 4.2 The Internal Destabilization of Primary Minerals (Primary Plasmic Microsystems) ... 156
 4.2.1 Porosity-Permeability and Microsystems in Crystalline Rocks 156
 4.2.2 Petrography of Contact Microsystems ... 163
 4.2.3 Petrography of the Primary Plasmic Microsystems ... 167
 4.3 Mineral Reactions in the Secondary Plasmic Microsystems ... 193
 4.3.1 Petrography of the Secondary Plasmic Microsystems 194
 4.3.2 Clays Forming in Secondary Plasmic Microsystems .. 196
 4.4 The Ultimate Weathering Stages .. 203
 4.4.1 The Fissural Microsystems: Cutans ... 203
 4.4.2 Accumulations (Absolute and Residual) ... 207
 4.5 The Weathering of Porous Sedimentary Rocks ... 214
 4.5.1 Glaucenitic Sandstones ... 214
 4.5.2 Weathering of Marls ... 217
 4.6 Possible Models for Weathering Processes .. 219
 4.6.1 From Heterogeneity to Homogeneity .. 219
 4.6.2 Mass Balance and Weathering Rates ... 222
 4.6.3 From Qualitative to Quantitative Models ... 225
 4.7 Summary of the Water/Rock Interaction Clay-Forming Processes 237
Suggested Reading ... 239

5 Plants and Soil Clay Minerals .. 241
 Introduction ... 241
 5.1 Dynamics of Clay Reactions in the Soil (Plant/Clay Interaction) Zone of the A Horizon ... 241
 5.1.1 Disequilibrium in Plant–Soil Zone Clays .. 241
 5.1.2 Dynamics of Clay Reactions in the Soils .. 242
 5.2 Clay Mineral Types in the Plant–Soil Interaction Zone ... 247
 5.2.1 Illite .. 247
 5.2.2 Kaolinite .. 248
8 The Place of Clay Mineral Species in Soils and Alterites .. 321
Introduction ... 321
8.1 Where Clay Mineral Types Occur in Alterites and Soils .. 321
 8.1.1 The 2:1 Minerals .. 322
 8.1.2 Kaolinite and Kaolinite/Smectite Mixed Layer Minerals .. 325
 8.1.3 Gibbsite ... 325
 8.1.4 Iron Oxyhydroxides .. 326
 8.1.5 Imogolite and Allophane .. 326
 8.1.6 Chlorites ... 327
 8.1.7 Palygorskite, Sepiolite .. 327
8.2 Clay Minerals Present in Soils as a Response to Climate 328
 8.2.1 Physical Factors and Their Effect on Alteration and Soil Clay Mineral Facies 328
 8.2.2 Weathering Trend (Water – Silicate Chemical Trends) ... 330
8.3 The Impact of Plant Regime on Clay Minerals in Soils ... 334
 8.3.1 Reactivity of Clay Minerals in Ecosystems ... 334
 8.3.2 Convergence of Soil Clay Mineralogies ... 337
 8.3.3 Effect of Chemical Translocation by Plants on Clay Mineral Stabilities 338
 8.3.4 Equilibrium and Disequilibrium of Soil Clays ... 343
8.4 The Structure of Alteration and Clay Formation ... 344
 8.4.1 Water/Rock Interaction .. 344
 8.4.2 Source Rock and Clays ... 345
 8.4.3 Plant/Soil Interaction ... 345
 8.4.4 Clay Transport .. 346
 8.4.5 Kinetics of Clay Change in the Soil Zone ... 347
 8.4.6 Minerals Present and Their Change in the Soil/Plant Interaction Zone 347
 8.4.7 Conclusions ... 349
8.5 Perspectives for Clay Mineral Science in Surface Environments:......................... 349
 Challenges for the Future ... 349
 8.5.1 Soils and Crops .. 349
 8.5.2 Soils as a Natural Safety Net for Modern Society .. 351
 Suggested Reading ... 351

Annexes .. 353

Annex 1 – Polytypes .. 353
 Definition ... 353
 An Example: The Mica or Illite Polytypes ... 353
 References ... 355
<table>
<thead>
<tr>
<th>Annex 2 – Mixed Layer Minerals</th>
<th>357</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions of Interstratification</td>
<td>357</td>
</tr>
<tr>
<td>Random Stacking Sequence (R0)</td>
<td>357</td>
</tr>
<tr>
<td>Ordered Stacking Sequences (R1)</td>
<td>357</td>
</tr>
<tr>
<td>References</td>
<td>360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annex 3 – Cation Exchange Capacity</th>
<th>361</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Chemical Reaction of Cation Exchange</td>
<td>361</td>
</tr>
<tr>
<td>Deviation from Ideality</td>
<td>362</td>
</tr>
<tr>
<td>The Variable Charges</td>
<td>363</td>
</tr>
<tr>
<td>References</td>
<td>364</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annex 4 – Hydroxy-Interlayered Minerals (HIMs)</th>
<th>365</th>
</tr>
</thead>
<tbody>
<tr>
<td>The XRD Properties of Hydroxy-Interlayered Minerals</td>
<td>365</td>
</tr>
<tr>
<td>The Incorporation of Al Ions in the Interlayer Region of HIMs</td>
<td>365</td>
</tr>
<tr>
<td>The Crystallochemical Composition of HIMs</td>
<td>371</td>
</tr>
<tr>
<td>The Mixed Layer Model</td>
<td>372</td>
</tr>
<tr>
<td>Conclusion</td>
<td>373</td>
</tr>
<tr>
<td>References</td>
<td>373</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annex 5 – Phase Diagrams Applied to Clay Mineral Assemblages</th>
<th>375</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals</td>
<td>375</td>
</tr>
<tr>
<td>Clay Minerals: The Stable Phases at Surface of the Earth</td>
<td>377</td>
</tr>
<tr>
<td>References</td>
<td>378</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annex 6 – Kinetics</th>
<th>381</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals</td>
<td>381</td>
</tr>
<tr>
<td>The Fick’s Laws</td>
<td>382</td>
</tr>
<tr>
<td>Suggested Reading</td>
<td>384</td>
</tr>
<tr>
<td>References</td>
<td>385</td>
</tr>
</tbody>
</table>

Subject Index | 403 |
The Origin of Clay Minerals in Soils and Weathered Rocks
Velde, B.B.; Meunier, A.
2008, XII, 406 p. 195 illus., Hardcover
ISBN: 978-3-540-75633-0