Contents

Part I Introduction

Rule Extraction from Support Vector Machines: An Introduction
Joachim Diederich .. 3
1 Explanation: The Foundations 3
 1.1 Forms of Explanation 4
 1.2 Analogy as a Form of Explanation 5
 1.3 Explanation-Based Generalization 6
 1.4 How and Why Explanations 7
 1.5 Generating or Identifying the Best Explanation 8
2 Rule Extraction from Support Vector Machines: Aims and Significance ... 8
 2.1 Provision of a “User Explanation” Capability 9
 2.2 Transparency ... 10
 2.3 Software Verification 10
 2.4 Improving Generalisation 11
 2.5 Data Exploration and the Induction of Scientific Theories .. 11
3 Translucency and Rule Quality 11
 3.1 The Neural Network Case 12
 3.2 Translucency and Rule Quality Applied to Rule Extraction from SVMs ... 13
4 An Alternative View on Rule Extraction: Information Retrieval .. 14
5 A Case Study .. 16
6 A Classification System for Rule Extraction from SVMs .. 26
7 Conclusions and Future Challenges 28
8 Acknowledgements ... 30
References .. 30
Rule Extraction from Support Vector Machines: An Overview of Issues and Application in Credit Scoring
David Martens, Johan Huysmans, Rudy Setiono, Jan Vanthienen, and Bart Baesens

1 Introduction ... 34
2 The Support Vector Machine 34
3 The Rationale Behind SVM Rule Extraction 36
4 An Overview of SVM Rule Extraction Techniques 38
5 Issues Concerning SVM Rule Extraction 49
6 Credit Scoring Application 53
7 Alternatives to Rule Extraction 56
8 Conclusion .. 59
9 Acknowledgement .. 59
References .. 59

Part II Algorithms and Techniques

Rule Extraction for Transfer Learning
Lisa Torrey, Jude Shavlik, Trevor Walker, and Richard Maclin
1 Introduction .. 67
2 Transfer Learning and Advice Taking 67
3 SVMs in Reinforcement Learning 69
4 Extracting Rules from an RL Source Task 71
5 Case Study .. 76
6 Policy-Transfer Results 78
7 Skill-Transfer Results 79
X Contents

3 The Spanning of SVM Tree 141
 3.1 Depth-First Spanning Tree 142
 3.2 Breadth-First Spanning Tree 142
 3.3 The SVMT Algorithms 143
 3.4 Coping with Class Imbalance and Class Overlap 145
4 SVMT Rules Extraction 145
 4.1 Logic Association Rules 145
 4.2 SVM Nodes Interpolation 146
 4.3 SVMT-Rule ... 149
5 Experiments and Applications 152
 5.1 Synthetic Dataset .. 152
 5.2 Cancer Diagnosis .. 156
 5.3 Fraud Detection .. 158
6 Discussions and Conclusions 159
7 Acknowledgements .. 160
References .. 160

Prototype Rules from SVM
Marcin Blachnik and W/łodzisław Duch 163

1 Why Prototype-Based Rules? 163
2 P-Rules and Their Interpretation 165
 2.1 Types of P-Rules 166
 2.2 Support Vectors as Prototypes 166
 2.3 Removing Linear Dependencies Among Support Vectors .. 167
 2.4 Reducing the Number of Support Vectors 169
 2.5 Finding Optimal Number of Support Vectors 171
 2.6 Problems with Interpretation 174
3 Searching for Informative Prototypes 174
 3.1 Prototype Selection Using Context Dependent Clustering . 176
 3.2 The Conditional Fuzzy Clustering Algorithm 177
 3.3 Determining the Context 178
 3.4 Numerical Illustration of the CFCM Approach 178
4 Conclusions .. 180
References .. 181

Part III Applications

Rolf Mitsdorffer and Joachim Diederich 185
1 Motivation ... 185
2 Introduction ... 186
 2.1 Financial Data Mining 186
Accent in Speech Samples: Support Vector Machines for Classification and Rule Extraction

Carol Pedersen and Joachim Diederich

1 Introduction ... 205
 1.1 Motivation and Significance 205
 1.2 Overview ... 205
2 Accent Recognition .. 206
 2.1 Accent .. 206
 2.2 Automatic Speech Recognition 207
 2.3 Mel Frequency Cepstrum Coefficients 208
3 Rule Extraction from Support Vector Machines for Accent 209
 3.1 Support Vector Machines 209
 3.2 Rule Extraction 210
 3.3 Objectives .. 211
4 Methodology .. 211
 4.1 Speech Data and Feature Extraction 211
 4.2 Machine Learning Experiments 212
 4.3 Rule Extraction and Evaluation 213
5 Results .. 213
 5.1 Machine Learning Experiments 213
 5.2 Evaluation of the Rule Extraction Results 218
6 Discussion .. 223
References .. 225

Rule Extraction from SVM for Protein Structure Prediction

Jieyue He, Hae-jin Hu, Bernard Chen, Phang C. Tai, Rob Harrison, and Yi Pan

1 Introduction ... 227
2 Rule Generation by Combing SVM and DT 229
 2.1 SVM_DT .. 229
2.2 Protein Second Structure Prediction with SVM_DT 231
2.3 Transmembrane Segments Prediction and Understanding
Using SVM_DT .. 235
3 Extracting Rule from SVM Based on Association Rule 238
 3.1 Association Rule Based Method 238
 3.2 Association Rule Mining 239
4 Rule Clustering and Super-rule Generation 244
5 Conclusions ... 247
6 Acknowledgements ... 249
References .. 249

Subject Index ... 253

Author Index ... 261
Rule Extraction from Support Vector Machines
Diederich, J. (Ed.)
2008, XII, 262 p. 55 illus., Hardcover
ISBN: 978-3-540-75389-6