Contents

Part I Introduction

Rule Extraction from Support Vector Machines: An Introduction
Joachim Diederich
3
- Explanation: The Foundations ... 3
 - 1.1 Forms of Explanation .. 4
 - 1.2 Analogy as a Form of Explanation 5
 - 1.3 Explanation-Based Generalization 6
 - 1.4 How and Why Explanations 7
 - 1.5 Generating or Identifying the Best Explanation 8
- Rule Extraction from Support Vector Machines: Aims and Significance .. 8
 - 2.1 Provision of a “User Explanation” Capability 9
 - 2.2 Transparency ... 10
 - 2.3 Software Verification 10
 - 2.4 Improving Generalisation 11
 - 2.5 Data Exploration and the Induction of Scientific Theories 11
- Translucency and Rule Quality .. 11
 - 3.1 The Neural Network Case 12
 - 3.2 Translucency and Rule Quality Applied to Rule Extraction
 from SVMs .. 13
- An Alternative View on Rule Extraction: Information Retrieval
 ... 14
- A Case Study .. 16
- A Classification System for Rule Extraction from SVMs 26
- Conclusions and Future Challenges 28
- Acknowledgements .. 30
References ... 30
Rule Extraction from Support Vector Machines: An Overview of Issues and Application in Credit Scoring
David Martens, Johan Huysmans, Rudy Setiono, Jan Vanthienen, and Bart Baesens

1 Introduction
2 The Support Vector Machine
3 The Rationale Behind SVM Rule Extraction
 3.1 Why Rule Extraction
 3.2 Why SVM Rule Extraction
4 An Overview of SVM Rule Extraction Techniques
 4.1 Classification Scheme for SVM Rule Extraction Techniques
 4.2 SVM Rule Extraction Techniques
5 Issues Concerning SVM Rule Extraction
 5.1 Rule Output
 5.2 High Dimensional Data
 5.3 Constraint Based Learning: Knowledge Fusion Problem
 5.4 Specificity of Underlying Black Box Model
 5.5 Regression
 5.6 Availability of Code
6 PDF
 6.1 Credit Scoring in Basel II
 6.2 Classification Model
7 Alternatives to Rule Extraction
 7.1 Inverse Classification
 7.2 Self Organizing Maps
 7.3 Incremental Approach
8 Conclusion
9 Acknowledgement
References

Part II Algorithms and Techniques

Rule Extraction for Transfer Learning
Lisa Torrey, Jude Shavlik, Trevor Walker, and Richard Maclin

1 Introduction
2 Transfer Learning and Advice Taking
3 SVMs in Reinforcement Learning
4 Extracting Rules from an RL Source Task
 4.1 Acquiring Rules from the Q-function
 4.2 Acquiring Rules from Observed Behavior
5 Case Study
 5.1 Policy-Transfer Results
 5.2 Skill-Transfer Results
Rule Extraction from Linear Support Vector Machines via Mathematical Programming

Glenn Fung, Sathyakama Sandilya, and R. Bharat Rao

1. Introduction .. 83
 1.1 About Notation .. 84
2. Medical Relevance .. 85
3. Sparse Hyperplane Classifiers: 1-Norm Support Vector Machines .. 86
4. Rule Extraction from Hyperplane Classifiers 87
 4.1 Volume Maximization Criteria 90
 4.2 Point Coverage Maximization Criteria 91
5. Algorithm Convergence Properties 93
6. Numerical Testing .. 96
 6.1 WDBC Dataset .. 98
 6.2 The Lung CAD Dataset ... 99
7. Other Mathematical Programming Formulations 99
 7.1 Conditioning Rules by Using Prior Knowledge 99
 7.2 Creating a Rule that Covers an Specific Given Point or Set of Points ... 100
 7.3 Rule Extraction and Knowledge-Based SVMS for Incremental Learning ... 101
8. Conclusion and Future Directions 104
References .. 105

Rule Extraction Based on Support and Prototype Vectors

Haydemar Núñez, Cecilio Angulo, and Andreu Catalá 109

1 Combining Support Vectors and Prototype Vectors to Extract Rules ... 110
 1.1 Building an Ellipsoid and Its Associated Rule Equation 112
 1.2 Generating a Set of Rules 118
 1.3 Simplified Representational Language for the Model 122
 1.4 Classification by Using the Set of Rules 126
2 Experiments .. 127
3 Eliminating Randomness from the Clustering Algorithm 130
4 Conclusions and Further Research 132
References .. 133

SVMT-Rule: Association Rule Mining Over SVM Classification Trees

Shaoning Pang and Nik Kasabov ... 135

1 Introduction ... 135
2 SVM Classification Tree ... 137
 2.1 Two-Class SVM Tree .. 137
X Contents

3 The Spanning of SVM Tree .. 141
 3.1 Depth-First Spanning Tree 142
 3.2 Breadth-First Spanning Tree 142
 3.3 The SVMT Algorithms 143
 3.4 Coping with Class Imbalance and Class Overlap 145
4 SVMT Rules Extraction ... 145
 4.1 Logic Association Rules 145
 4.2 SVM Nodes Interpolation 146
 4.3 SVMT-Rule ... 149
5 Experiments and Applications 152
 5.1 Synthetic Dataset .. 152
 5.2 Cancer Diagnosis ... 156
 5.3 Fraud Detection ... 158
6 Discussions and Conclusions 159
7 Acknowledgements ... 160
References .. 160

Prototype Rules from SVM
Marcin Blachnik and W/ław Duch............................ 163

1 Why Prototype-Based Rules? 163
2 P-Rules and Their Interpretation 165
 2.1 Types of P-Rules .. 166
 2.2 Support Vectors as Prototypes 166
 2.3 Removing Linear Dependencies Among Support Vectors ... 167
 2.4 Reducing the Number of Support Vectors 169
 2.5 Finding Optimal Number of Support Vectors 171
 2.6 Problems with Interpretation 174
3 Searching for Informative Prototypes 174
 3.1 Prototype Selection Using Context Dependent Clustering . 176
 3.2 The Conditional Fuzzy Clustering Algorithm 177
 3.3 Determining the Context 178
 3.4 Numerical Illustration of the CFCM Approach 178
4 Conclusions .. 180
References .. 181

Part III Applications

Prediction of First-Day Returns of Initial Public Offering in
the US Stock Market Using Rule Extraction from Support
Vector Machines
Rolf Mitsdorffer and Joachim Diederich.................... 185

1 Motivation .. 185
2 Introduction .. 186
 2.1 Financial Data Mining 186
2.2 Protein Second Structure Prediction with SVM_DT 231
2.3 Transmembrane Segments Prediction and Understanding
 Using SVM_DT.. 235
3 Extracting Rule from SVM Based on Association Rule 238
 3.1 Association Rule Based Method 238
 3.2 Association Rule Mining.. 239
4 Rule Clustering and Super-rule Generation 244
5 Conclusions... 247
6 Acknowledgements .. 249
References .. 249

Subject Index ... 253

Author Index .. 261
Rule Extraction from Support Vector Machines
Diederich, J. (Ed.)
2008, XII, 262 p. 55 illus., Hardcover
ISBN: 978-3-540-75389-6