Contents

Physical Background to the K-Theory Classification of D-Branes:

- **Introduction and References** ... 1

Part I Bundles over a Space and Modules over an Algebra

1 **Generalities on Bundles and Categories** 9
 1 Bundles Over a Space .. 9
 2 Examples of Bundles .. 11
 3 Two Operations on Bundles ... 13
 4 Category Constructions Related to Bundles 14
 5 Functors Between Categories .. 16
 6 Morphisms of Functors or Natural Transformations 18
 7 Étale Maps and Coverings ... 20
 References ... 22

2 **Vector Bundles** .. 23
 1 Bundles of Vector Spaces and Vector Bundles 23
 2 Isomorphisms of Vector Bundles and Induced Vector Bundles 25
 3 Image and Kernel of Vector Bundle Morphisms 26
 4 The Canonical Bundle Over the Grassmannian Varieties 28
 5 Finitely Generated Vector Bundles 29
 6 Vector Bundles on a Compact Space 31
 7 Collapsing and Clutching Vector Bundles on Subspaces 31
 8 Metrics on Vector Bundles .. 33
 Reference ... 34

3 **Relation Between Vector Bundles, Projective Modules, and Idempotents** ... 35
 1 Local Coordinates of a Vector Bundle Given by Global Functions over a Normal Space 36
 2 The Full Embedding Property of the Cross Section Functor 37
 3 Finitely Generated Projective Modules 38
 4 The Serre–Swan Theorem .. 40
5 Idempotent Classes Associated to Finitely Generated Projective Modules ... 42

4 K-Theory of Vector Bundles, of Modules, and of Idempotents 45
 1 Generalities on Adding Negatives .. 45
 2 K-Groups of Vector Bundles ... 47
 3 K-Groups of Finitely Generated Projective Modules 48
 4 K-Groups of Idempotents .. 50
 5 K-Theory of Topological Algebras 51
References .. 54

5 Principal Bundles and Sections of Fibre Bundles: Reduction of the Structure and the Gauge Group I 55
 1 Bundles Defined by Transformation Groups 55
 2 Definition and Examples of Principal Bundles 57
 3 Fibre Bundles .. 58
 4 Local Coordinates for Fibre Bundles 58
 5 Extension and Restriction of Structure Group 60
 6 Automorphisms of Principal Bundles and Gauge Groups 62
Reference .. 62

Part II Homotopy Classification of Bundles and Cohomology: Classifying Spaces

6 Homotopy Classes of Maps and the Homotopy Groups 65
 1 The Space Map(X,Y) .. 65
 2 Continuity of Substitution and Map(X × T, Y) 66
 3 Free and Based Homotopy Classes of Maps 67
 4 Homotopy Categories ... 68
 5 Homotopy Groups of a Pointed Space 69
 6 Bundles on a Cylinder B × [0,1] .. 72

7 The Milnor Construction: Homotopy Classification of Principal Bundles ... 75
 1 Basic Data from a Numerable Principal Bundle 75
 2 Total Space of the Milnor Construction 76
 3 Uniqueness up to Homotopy of the Classifying Map 78
 4 The Infinite Sphere as the Total Space of the Milnor Construction 80
References ... 81

8 Fibrations and Bundles: Gauge Group II 83
 1 Factorization, Lifting, and Extension in Square Diagrams 84
 2 Fibrations and Cofibrations ... 85
 3 Fibres and Cofibres: Loop Space and Suspension 88
 4 Relation Between Loop Space and Suspension Group Structures on Homotopy Classes of Maps [X,Y]∗ .. 90
5 Outline of the Fibre Mapping Sequence and Cofibre Mapping Sequence ... 91
6 From Base to Fibre and From Fibre to Base 93
7 Homotopy Characterization of the Universal Bundle 95
8 Application to the Classifying Space of the Gauge Group 95
9 The Infinite Sphere as the Total Space of a Universal Bundle 96
Reference .. 96

9 Cohomology Classes as Homotopy Classes: CW-Complexes 97
 1 Filtered Spaces and Cell Complexes 98
 2 Whitehead’s Characterization of Homotopy Equivalences 99
 3 Axiomatic Properties of Cohomology and Homology 100
 4 Construction and Calculation of Homology
 and Cohomology .. 103
 5 Hurewicz Theorem ... 105
 6 Representability of Cohomology by Homotopy Classes 105
 7 Products of Cohomology and Homology 106
 8 Introduction to Morse Theory 107
References .. 109

10 Basic Characteristic Classes .. 111
 1 Characteristic Classes of Line Bundles 111
 2 Projective Bundle Theorem and Splitting Principle 113
 3 Chern Classes and Stiefel–Whitney Classes of Vector Bundles 114
 4 Elementary Properties of Characteristic Classes 117
 5 Chern Character and Related Multiplicative Characteristic Classes . 118
 6 Euler Class .. 121
 7 Thom Space, Thom Class, and Thom Isomorphism 122
 8 Stiefel–Whitney Classes in Terms of Steenrod Operations 122
 9 Pontrjagin classes .. 125
References .. 125

11 Characteristic Classes of Manifolds 127
 1 Orientation in Euclidean Space and on Manifolds 127
 2 Poincaré Duality on Manifolds 129
 3 Thom Class of the Tangent Bundle and Duality 130
 4 Euler Class and Euler Characteristic of a Manifold 131
 5 Wu’s Formula for the Stiefel–Whitney Classes of a Manifold .. 132
 6 Cobordism and Stiefel–Whitney Numbers 133
 7 Introduction to Characteristic Classes and Riemann–Roch 134
Reference .. 135
12 Spin Structures ...137
1 The Groups $\text{Spin}(n)$ and $\text{Spin}^c(n)$137
2 Orientation and the First Stiefel–Whitney Class139
3 Spin Structures and the Second Stiefel–Whitney Class140
4 Spin^c Structures and the Third Integral Stiefel–Whitney Class .141
5 Relation Between Characteristic Classes of Real
 and Complex Vector Bundles ..142
6 Killing Homotopy Groups in a Fibration142

Part III Versions of K-Theory and Bott Periodicity

13 G-Spaces, G-Bundles, and G-Vector Bundles149
1 Relations Between Spaces and G-Spaces: G-Homotopy149
2 Generalities on G-Bundles ..152
3 Generalities on G-Vector Bundles153
4 Special Examples of G-Vector Bundles155
5 Extension and Homotopy Problems for G-Vector Bundles
 for G a Compact Group ..157
6 Relations Between Complex and Real G-Vector Bundles158
7 KR_G-Theory ...159
References ..161

14 Equivariant K-Theory Functor K_G: Periodicity, Thom
 Isomorphism, Localization, and Completion163
1 Associated Projective Space Bundle to a G-Equivariant Bundle 163
2 Assertion of the Periodicity Theorem for a Line Bundle164
3 Thom Isomorphism ..167
4 Localization Theorem of Atiyah and Segal170
5 Equivariant K-Theory Completion Theorem of Atiyah and Segal ...172
References ..173

15 Bott Periodicity Maps and Clifford Algebras175
1 Vector Bundles and Their Principal Bundles and Metrics175
2 Homotopy Representation of K-Theory176
3 The Bott Maps in the Periodicity Series179
4 $KR_G^q(X)$ and the Representation Ring $RR(G)$180
5 Generalities on Clifford Algebras and Their Modules181
6 $KR_G^{-q}(\ast)$ and Modules Over Clifford Algebras184
7 Bott Periodicity and Morse Theory185
8 The Graded Rings $KU^\ast(\ast)$ and $KO^\ast(\ast)$187
References ..188
16 Gram–Schmidt Process, Iwasawa Decomposition, and Reduction of Structure .. 189
1 Classical Gram–Schmidt Process .. 189
2 Definition of Basic Linear Groups .. 190
3 Iwasawa Decomposition for GL and SL .. 191
4 Applications to Structure Group Reduction for Principal Bundles Related to Vector Bundles .. 192
5 The Special Case of $SL_2(\mathbb{R})$ and the Upper Half Plane 193
6 Relation Between $SL_2(\mathbb{R})$ and $SL_2(\mathbb{C})$ with the Lorentz Groups ... 194
A Appendix: A Novel Characterization of the Iwasawa Decomposition of a Simple Lie Group (by B. Krötz) .. 195
References .. 201

17 Topological Algebras: G-Equivariance and KK-Theory 203
1 The Module of Cross Sections for a G-Equivariant Vector Bundle . 204
3 Generalities on Topological Algebras: Stabilization 207
4 Ell(X) and Ext(X) Pairing with K-Theory to \mathbb{Z} 209
5 Extensions: Universal Examples .. 212
6 Basic Examples of Extensions for K-Theory .. 215
7 Homotopy Invariant, Half Exact, and Stable Functors 219
8 The Bivariant Functor $kk_*(A, B)$.. 220
9 Bott Map and Bott Periodicity .. 221
A Appendix: The Green–Julg Theorem (by S. Echterhoff) 223
References .. 226

Part IV Algebra Bundles: Twisted K-Theory

18 Isomorphism Classification of Operator Algebra Bundles .. 229
1 Vector Bundles and Algebra Bundles .. 230
2 Principal Bundle Description and Classifying Spaces 231
3 Homotopy Classification of Principal Bundles .. 233
4 Classification of Operator Algebra Bundles .. 235
References .. 239

19 Brauer Group of Matrix Algebra Bundles and K-Groups .. 241
1 Properties of the Morphism α_n .. 241
2 From Brauer Groups to Grothendieck Groups 243
3 Stability I: Vector Bundles .. 244
4 Stability II: Characteristic Classes of Algebra Bundles and Projective K-Group .. 245
5 Rational Class Groups .. 246
6 Sheaf Theory Interpretation .. 247
Reference .. 249
Analytic Definition of Twisted K-Theory 251
1 Cross Sections and Fibre Homotopy Classes of Cross Sections 251
2 Two Basic Analytic Results in Bundle Theory and K-Theory 252
3 Twisted K-Theory in Terms of Fredholm Operators 253

The Atiyah–Hirzebruch Spectral Sequence in K-Theory 255
1 Exact Couples: Their Derivation and Spectral Sequences 255
2 Homological Spectral Sequence for a Filtered Object 256
3 K-Theory Exact Couples for a Filtered Space 258
4 Atiyah–Hirzebruch Spectral Sequence for K-Theory 260
5 Formulas for Differentials ... 262
6 Calculations for Products of Real Projective Spaces 263
7 Twisted K-Theory Spectral Sequence 264

Twisted Equivariant K-Theory and the Verlinde Algebra 265
1 The Verlinde Algebra as the Quotient of the Representation Ring . 266
2 The Verlinde Algebra for $SU(2)$ and $sl(2)$ 268
3 The G-Bundles on G with the Adjoint G–Action 271
4 A Version of the Freed–Hopkins–Teleman Theorem 273

Part V Gerbes and the Three Dimensional Integral Cohomology Classes

Bundle Gerbes ... 277
1 Notation for Gluing of Bundles ... 277
2 Definition of Bundle Gerbes ... 280
3 The Gerbe Characteristic Class .. 281
4 Stability Properties of Bundle Gerbes 283
5 Extensions of Principal Bundles Over a Central Extension 284
6 Modules Over Bundle Gerbes and Twisted K-Theory 284

Category Objects and Groupoid Gerbes 287
1 Simplicial Objects in a Category 287
2 Categories in a Category ... 290
3 The Nerve of the Classifying Space Functor and Definition of Algebraic K-Theory ... 293
4 Groupoids in a Category .. 295
5 The Groupoid Associated to a Covering 297
6 Gerbes on Groupoids .. 298
7 The Groupoid Gerbe Characteristic Class 300
Basic Bundle Theory and K-Cohomology Invariants
Husemoller, D.; Joachim, M.; Jurco, B.; Schottenloher, M.
2008, XV, 340 p., Hardcover
ISBN: 978-3-540-74955-4