Contents

Dedication .. v
Preface ... vii
Acknowledgments .. xi
Contents .. xiii
Contributors .. xxxi
About the Editor .. xxxvii

PART I INTRODUCTORY PART

I Introductory Part .. 3
Kees Stigter
I.1 Introduction to Part I .. 3
I.2 Agrometeorology, a Broad Definition (and Other Starting Issues) 4
I.3 Agrometeorology, an “End to End” Information Flow Scheme 7
I.4 Agrometeorology, Applications and Use ... 15
I.5 Agrometeorological Services ... 19
I.6 Boundary and Initial Conditions for Solving Problems with Agrometeorological Components .. 31
Annex I.I Postgraduate Syllabi Applied Agrometeorology 34
Annex I.II Conceptual and Diagnostic Framework: Information Flow 44
Annex I.III Syllabi Agrometeorological Extension Intermediaries 45

PART II OPERATIONAL APPLICATIONS OF AGROMETEOROLOGICAL SERVICES

II.A Introduction to Part II (INSAM Examples) ... 55
Kees Stigter
<table>
<thead>
<tr>
<th>II.B Introduction to Part II (CMA/CAU/APMP Examples)</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kees Stigter, Zheng Dawei, Wang Shili, and Ma Yuping</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.C Agrometeorological Services</th>
<th>101</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>II.1 Design of sand settlement of wind blown sand using local trees and grasses (Sudan)</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nawal K. Nasr Al-Amin, C.J. Stigter, Ahmed Eltayeb Mohammed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.2 Agrometeorological service for irrigation advice (Cuba)</th>
<th>108</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ismabel María Domínguez Hurtado</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.3 Frost forecast service for Inner Mongolia in 2007 (China)</th>
<th>114</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wei Yurong</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.4 Design of protection of sloping land from soil loss and water run off using hedgerow intercropping (Kenya)</th>
<th>118</th>
</tr>
</thead>
<tbody>
<tr>
<td>Josiah M. Kinama, C.J. Stigter, C.K. Ong</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.5 Design of multiple shelterbelts to protect crops from hot dry air (Nigeria)</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambert O.Z. Onyewotu, C.J. Stigter, J.J. Owonubi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.6 Seasonal vegetable growing on riverbeds – a farmers’ innovation (India)</th>
<th>129</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajendra Prasad, Virendar Singh</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.7 Agrometeorological information for the prevention of forest and wildland fires (Cuba)</th>
<th>133</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ismabel María Domínguez Hurtado</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.8 Furrow planting and ridge covering with plastic for drought relief in semi-arid regions (China)</th>
<th>138</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li Chunqiang</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.9 Design of on-station alley cropping trials on flat land in the semi-arid tropics (Kenya)</th>
<th>142</th>
</tr>
</thead>
<tbody>
<tr>
<td>David N. Mungai, C.J. Stigter, C.L. Coulson, J.K. Ng’ang’a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II.10 Early snow melting through surface spread of soil material (India)</th>
<th>147</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajendra Prasad, Vijay Singh Thakur</td>
<td></td>
</tr>
</tbody>
</table>
II.11 Water use and water waste under traditional and non-traditional irrigation practices (Sudan) .. 151
Ahmed A. Ibrahim (dit Kabo), C.J. Stigter, H.S. Adam, A.M. Adeeb

II.12 Shelterbelt design for protection of irrigation canals and agricultural land from blown sand encroachment (Sudan) 157
Ahmed Eltayeb Mohammed, C.J. Stigter, H.S. Adam

II.13 Design of improved underground storage pits (matmura) for sorghum in cracking clays (Sudan) 162
Ahmed el-Tayeb Abdalla, C.J. Stigter, M.C. Gough, Nageeb Ibrahim Bakheit

II.14 Improved design of millet based intercropping systems using on-station field research and microclimate manipulation (Nigeria) 168
Tunji Oluwasemire, C.J. Stigter, J.J Owonubi

II.15 Design of wind protection agroforestry from experience in a demonstration plot of hedged agroforestry (Kenya) 174
Silvery B.B. Oteng’i, C.J. Stigter, J.K. Ng’ang’a, H.-P. Liniger

II.16 Applying straw mulch on winter wheat in winter to improve soil moisture conditions (China) .. 179
Li Chunqiang

II.17 Using shade trees to ameliorate the microclimate, yields and quality of tea (India) ... 183
Rajendra Prasad, K.L. Sharma

II.18 Explaining wind protection of coffee from umbrella shade trees (Tanzania) ... 187
Reuben M.R. Kainkwa, C.J. Stigter

II.19 Development and establishment of a drought early warning system (Cuba) ... 190
Roger E. Rivero Vega

II.20 Development of a web-based optimal irrigation calendar (Portugal) ... 195
Jorge Maia, Miguel Castro Neto, Isaurindo Oliveira

II.C.I Advisory and service system of crop and variety planning in Xing’an ... 199
Hou Qiong, Tang Hongyan, Niu Baoliang
II.C.II Sowing advice for spring wheat depending on the frost melting condition in the autumn irrigated top soil in Bayannur 205
Hou Qiong, Yang Song

II.C.III Improving microclimate for water melon by covering sandy soil with pebbles .. 210
Liu Jing, Zhang Yulan

II.C.IV Forecasting fungus disease conditions for wolfberries 217
Liu Jing

II.C.V Refined agroclimatic zoning used for planning of growing navel oranges, and protection advisory services after planting 224
Li Yingchun

II.C.VI Demonstration and extension of relay intercropping of late rice into lotus, enhanced by climate change .. 232
Li Yingchun

II.C.VII Water saving irrigation determined by soil moisture forecasting for wheat farms in the Huang-Huai-Huai Plane, Henan 238
Yu Weidong

II.C.VIII Forecasting peony flowering periods for various varieties and places in Luoyang city, Henan 245
Yu Weidong

II.C.IX Winter straw mulching increasing water use efficiency and yields in winter wheat ... 251
Li Chunqiang

II.C.X Early warning of low temperatures and less sunshine for plastic greenhouse crops in winter .. 256
Li Chunqiang

II.D Communication Approaches in Applied Agrometeorology 263

PART III FIELDS OF APPLICATION IN AGROMETEOROLOGY

III.1 Introduction to Part III .. 289
Kees Stigter
III.2 APPLIED AGROMETEOROLOGY OF MONOCROPPING IN THE OPEN

III.2.1 Strategic Use of Climate Information

III.2.1.(a) Combating Disasters: Monocropping 305
Kees Stigter

III.2.1.(b) Selection Processes of (Changes in) Land Use and Cropping Patterns: Monocropping 309
M.H. Ali and M.S.U. Talukder (with a Box contributed by Nguyen Van Viet)

III.2.1.(c) The Selection of Actual Preparedness Strategies for Dealing with Climate as Adopted in Monocropping 315
H.P. Das

III.2.1.(d) More Efficient Use of Agricultural Inputs as Part of Adoption of Preparedness Strategies: Monocropping 321
Kulasekaran Ramesh

III.2.1.(e) Selection of (Changes in) Livestock Management Patterns: Monocropping 327
Kees Stigter

III.2.1.(f) The Development of Microclimate Modification Patterns: Monocropping 331
Kees Stigter

III.2.1.(g) Designs of (Changes in) Protection Measures Against Extreme Climate: Monocropping 335
Kees Stigter

III.2.2 Coping with Climate Variability and Climate Change

III.2.2.(i) Improving the Issuing, Absorption and Use of Climate Forecast Information in Agricultural Production: Monocropping 341
Ajit Govind and Kees Stigter (with two Boxes contributed by Kees Stigter)

III.2.2.(ii) The Sustainable Development and use of Agro-Ecosystems: Monocropping 347
Ajit Govind and Kees Stigter
III.2.2.(iii) Detection and Awareness of Increasing Climate Variability and the Elevating Climate Risk: Monocropping 355
Kees Stigter

III.2.2.(iv) (Changes in) Adaptation Strategies to Climate Changes: Monocropping .. 359
Kees Stigter

III.2.3. Coping with Extreme Meteorological Events

III.2.3.(A) Problems and Solutions in Coping with Extreme Meteorological Events in Agricultural Production, and Challenges Remaining for the Use of Science to Contribute to Problem Analyses and Designing Valuable Solutions in this Context: Monocropping 365
Kees Stigter

III.2.3.(B) Designing and Selecting Efficient Early Warning Strategies and Increasing Their Efficiencies in Monocropping 371
H.P. Das

III.2.4 Tactical Decision Making Based on Weather Information

III.2.4.(I) Problems and Solutions in Using of and Coping with Weather Phenomena in Need of Tactical Decision Making and Challenges Remaining for the Use of Science to Contribute to Problem Analyses and Designing Viable Solutions in this Context: Monocropping 379
H.P. Das and C.J. Stigter

III.2.4.(II) Designing and Selecting Weather Related Tactical Applications for Agricultural Management and Increasing Their Efficiencies: Monocropping ... 385
H.P. Das and C.J. Stigter

III.2.5 Developing Risk Management Strategies

III.2.5. (α) Defining, Managing and Coping with Weather and Climate Related Risks in Agriculture: Monocropping 393
Kees Stigter

III.2.5.(β) Developing Scales and Tools for Weather and Climate Related Risk Quantifications: Monocropping 397
Kulasekaran Ramesh, Roger E. Rivero Vega, and Kees Stigter
III.2.5.(γ) Improving Weather and Climate Related Risk Assessments in Agricultural Production: Monocropping 403
Kulasekaran Ramesh and Kees Stigter (with a Box contributed by Roger E. Rivero Vega)

III.2.5.(δ) Designing and Communicating Improvements in Farm Applications of Risk Information Products: Monocropping 409
Kees Stigter

III.2.5.(ε) Improving Coping Strategies with Weather and Climate Risks in Agricultural Production, Including the Improved Use of Insurance Approaches: Monocropping .. 413
Kees Stigter

III.3 APPLIED AGROMETEOROLOGY OF MULTIPLE CROPPING

III.3.1 Strategic Use of Climate Information

III.3.1.(a) Combating Disasters: Multiple Cropping 419
Kees Stigter

III.3.1.(b) Selection Processes of (Changes in) Land Use and Cropping Patterns: Multiple Cropping .. 423
Emmanuel Ofori and Nicholas Kyei-Baffour (with a Box contributed by Kees Stigter)

III.3.1.(c) The Selection of Actual Preparedness Strategies for Dealing with Climate as Adopted in Multiple Cropping 429
Emmanuel Ofori, Nicholas Kyei-Baffour, and Kees Stigter

III.3.1.(d) More Efficient Use of Agricultural Inputs as Part of Adoption of Preparedness Strategies: Multiple Cropping 435
Kulasekaran Ramesh

III.3.1.(e) Selection of (Changes in) Livestock Management Patterns: Multiple Cropping .. 441
Kees Stigter

III.3.1.(f) The Development of Microclimate Modification Patterns: Multiple Cropping .. 445
Kees Stigter
III.3.1.(g) Designs of (Changes in) Protection Measures Against Extreme Climate: Multiple Cropping .. 449
Kees Stigter

III.3.2 Coping with Climate Variability and Climate Change

III.3.2.(i) Improving the Issuing, Absorption and Use of Climate Forecast Information in Agricultural Production: Multiple Cropping ... 455
Kees Stigter and Ajit Govind

III.3.2.(ii) The Sustainable Development and Use of Agro-Ecosystems:
Multiple Cropping ... 461
Sue Walker, Emmanuel Ofori, Nicholas Kyei-Baffour, and Kees Stigter

III.3.2.(iii) Detection of and Awareness on Increasing Climate Variability and the Elevating Climate Risk: Multiple Cropping 467
Kees Stigter

III.3.2.(iv) (Changes in) Adaptation Strategies to Climate Changes:
Multiple Cropping ... 471
Kees Stigter

III.3.3 Coping with Extreme Meteorological Events

III.3.3.(A) Problems and Solutions in Coping with Extreme Meteorological Events in Agricultural Production, and Challenges Remaining for the Use of Science to Contribute to Problem Analyses and Designing Valuable Solutions in This Context: Multiple Cropping... 477
Kees Stigter

III.3.3.(B) Designing and Selecting Early Warning Strategies and Increasing Their Efficiencies: Multiple Cropping 485
Sue Walker and Kees Stigter

III.3.4 Tactical Decision Making Based on Weather Information

III.3.4.(I) Problems and Solutions in Using of and Coping with Weather Phenomena in Need of Tactical Decision Making and Challenges Remaining for the Use of Science to Contribute to Problem Analyses and Designing Viable Solutions in This Context: Multiple Cropping 493
Sue Walker, Emmanuel Ofori, Nicholas Kyei-Baffour, and Kees Stigter
III.3.4.(II) Designing and Selecting Weather Related Tactical Applications for Agricultural Management and Increasing Their Efficiencies: Multiple Cropping .. 499
Emmanuel Ofori, Nicholas Kyei-Baffour, and Kees Stigter (with two Boxes contributed by Kees Stigter)

III.3.5 Developing Risk Management Strategies

III.3.5.(α) Defining, Managing and Coping with Weather and Climate Related Risks in Agriculture: Multiple Cropping 509
Kees Stigter

III.3.5.(β) Developing Scales and Tools for Weather and Climate Related Risk Quantifications: Multiple Cropping 513
Sue Walker, Kees Stigter, and Kulasekaran Ramesh (with Boxes contributed by Kulasekaran Ramesh and Sue Walker)

III.3.5.(γ) Improving Weather and Climate Related Risk Assessments in Agricultural Production: Multiple Cropping 519
Kulasekaran Ramesh, Kees Stigter, and Sue Walker

III.3.5.(δ) Designing and Communicating Improvements in Farm Applications of Risk Information Products: Multiple Cropping 527
Kees Stigter

III.3.5.(ε) Improving Coping Strategies with Weather and Climate Risks in Agricultural Production, Including the Improved Use of Insurance Approaches: Multiple Cropping .. 531
Kees Stigter

III.4 APPLIED FOREST (AGRO)METEOROLOGY

III.4.1 Strategic Use of Climate Information

III.4.1.(a) Combating Disasters in Forestry and Its Protection Functions 537
Dick Felch

III.4.1.(b) Selection Processes of (Changes in) Land Use and Afforestation Patterns ... 541
Ahmad Ainuddin Nuruddin (with a Box contributed by Kees Stigter)
III.4.1.(c) The Selection of Actual Preparedness Strategies for Dealing with Climate as Adopted in Forestry .. 547
Al Riebau

III.4.1.(d) More Efficient Use of Forestry and Management Inputs 553
Kulasekaran Ramesh and Kees Stigter (with a Box contributed by Kees Stigter)

III.4.1.(e) Selection of (Changes in) Livestock Management Patterns Related to Forests .. 559
Kees Stigter

III.4.1.(f) Development of Microclimate Modification Patterns in Forestry ... 563
Kees Stigter (with a Box contributed by Kulasekaran Ramesh and Kees Stigter)

III.4.1.(g) Designs of (Changes in) Protection Measures Against Extreme Climate in Forestry ... 567
Dick Felch

III.4.2 Coping with Climate Variability and Climate Change

III.4.2.(i) Improving the Issuing, Absorption and Use of Climate Forecast Information in Forestry ... 573
H.P. Das

III.4.2.(ii) Sustainable Development and Use of Forest Ecosystems 579
Al Riebau

III.4.2.(iii) Detection of and Awareness on Increasing Climate Variability and the Elevated Risk to Forestry 585
Al Riebau

III.4.2.(iv) (Changes in) Adaptation Strategies to Climate Change in Forestry ... 589
Al Riebau

III.4.3 Coping with Extreme Meteorological Events

III.4.3.(A) Problems and Solutions in Coping with Extreme Meteorological Events in Forestry, and Challenges Remaining for
the Use of Science to Contribute to Problem Analyses and Designing Valuable Solutions in the Context of Forest (Agro) Meteorology 595
Kees Stigter

III.4.3.(B) Designing and Selecting Efficient Early Warning Strategies and Increasing Their Efficiencies in Forestry 601
Al Riebau

III.4.4 Tactical Decision Making Based on Weather Information

III.4.4.(I) Problems and Solutions in Using of and Coping with Weather Phenomena in Need of Tactical Decision Making and Challenges Remaining for the Use of Science to Contribute to Problem Analyses and Designing Viable Solutions in This Context: Forest (Agro)Meteorology .. 609
Dick Felch and Kees Stigter

III.4.4.(II) Designing and Selecting Weather Related Tactical Applications for Forest Management and Increasing Their Efficiencies . 615
H.P. Das

III.4.5 Developing Risk Management Strategies

III.4.5.(α) Defining, Managing and Coping with Weather and Climate Related Risks in Forestry ... 623
Conrado Tobón

III.4.5.(β) Developing Scales and Tools for Weather and Climate Related Risk Quantifications in Forestry 629
Kulasekaran Ramesh

III.4.5.(γ) Improving Weather and Climate Related Risk Assessments in Forestry .. 637
Kulasekaran Ramesh

III.4.5.(δ) Designing and Communicating Improvements in Forestry Applications of Risk Information Products 643
Kees Stigter

III.4.5.(ε) Improving Coping Strategies with Weather and Climate Related Risks in Forestry Including the Improved Use of Insurance Approaches ... 647
Kees Stigter and Kulasekaran Ramesh
III.5 APPLIED AGROMETEOROLOGY OF NON-FOREST TREES

III.5.1 Strategic Use of Climate Information

III.5.1.(a) Combating Disasters by Using Agroforestry 653
Kees Stigter

III.5.1.(b) Selection Processes of (Changes in) Cropping Patterns Using Non-forest Trees .. 657
Luigi Mariani, Osvaldo Failla, and Kees Stigter

III.5.1.(c) Selection of Actual Preparedness Strategies for Dealing with Climate, as Adopted in Using Non-forest Trees 667
H.P. Das (with a Box contributed by Luigi Mariani and Osvaldo Failla)

III.5.1.(d) More Efficient Use of Inputs in Cropping Systems Using Trees ... 675
Kees Stigter

III.5.1.(e) Selection of (Changes in) Management Patterns in Agroforestry ... 681
Luigi Mariani, Osvaldo Failla, and Kees Stigter

III.5.1.(f) Development of Microclimate Modification Patterns in Agroforestry ... 685
Kees Stigter

III.5.1.(g) Designs of (Changes in) Protection Measures Against Extreme Climate in Agroforestry .. 689
Kees Stigter, Luigi Mariani, and Osvaldo Failla

III.5.2 Coping with Climate Variability and Climate Change

III.5.2.(i) Improving the Issuing, Absorption and Use of Climate Forecast Information In Agroforestry ... 695
Thomas J. Sauer (with a Box contributed by Kees Stigter)

III.5.2.(ii) Sustainable Development and Use of Ecosystems with Non-forest Trees .. 701
Thomas J. Sauer

III.5.2.(iii) Detection and Awareness of Increasing Climate Variability and the Elevating Climate Risk in Farming Systems with Non-Forest Trees ... 707
H.P. Das and C.J. Stigter
III.5.2. (iv) (Changes in) Adaptation Strategies to Climate Changes with Farming Systems Using Non-Forest Trees

Luigi Mariani and Osvaldo Failla

711

III.5.3 Coping with Extreme Meteorological Events

III.5.3. (A) Problems and Solutions in Coping with Extreme Meteorological Events in Agricultural Production, and Challenges Remaining for the Use of Science to Contribute to Problem Analyses and Designing Valuable Solutions in This Context: Non-forest Trees

Kees Stigter (with a Box contributed by E. Ofori and N. Kyei-Baffour)

717

III.5.3. (B) Designing and Selecting Efficient Early Warning Strategies and Increasing Their Efficiencies for Agroforestry Farming Systems

Simone Orlandini and Francesca Natali

723

III.5.4 Tactical Decision Making Based on Weather Information

III.5.4. (I) Problems and Solutions in Using of and Coping with Weather Phenomena in Need of Tactical Decision Making and Challenges Remaining for the Use of Science to Contribute to Problem Analyses and Designing Viable Solutions in This Context: Non-forest Trees

Luigi Mariani, Osvaldo Failla, and Kees Stigter (with a Box contributed by Kees Stigter)

733

III.5.4. (II) Designing and Selecting Weather Related Tactical Applications for Management of Agroforestry and Increasing Their Efficiencies

H.P. Das

739

III.5.5 Developing Risk Management Strategies

III.5.5. (α) Defining, Managing and Coping with Weather and Climate Related Risks in Agroforestry

H.P. Das

747

III.5.5. (β) Developing Scales and Tools for Weather and Climate Related Risk Quantifications in Agroforestry

Kees Stigter and Kulasekaran Ramesh (with a Box contributed by Kees Stigter)

751

III.5.5. (γ) Improving Weather and Climate Related Risk Assessments for Non-Forest Trees

C.J. Stigter, H.P. Das and Kulasekaran Ramesh (with a Box contributed by C.J. Stigter)

757
III.5.5.(δ) Designing and Communicating Improvements in Farm Applications of Risk Information Products in Agroforestry 763
Kees Stigter

III.5.5.(ε) Improving Coping Strategies with Weather and Climate Related Risks in Agroforestry Including the Improved Use of Insurance Approaches ... 767
Kees Stigter

III.6 APPLIED AGROMETEOROLOGY OF OTHER FORMS OF AGRICULTURAL PRODUCTION

III.6.A Animal Husbandry

III.6.A.(i) Problems and Solutions in Coping with Extreme Meteorological Events in Agricultural Production, and Challenges Remaining for the Use of Science to Contribute to Problem Analyses and Designing Valuable Solutions in This Context: Animal Husbandry . . 773
Kees Stigter

John Gaughan

John Gaughan and LeRoy Hahn

John Gaughan, Silvia Valtorta, and Nicola Lacetera

Combined with

Akinyemi Gabriel Omonijo

Silvia Valtorta

John Gaughan and Hesham Khalifa
III.6.B Cropping Under Cover

III.6.B.(i) Problems and Solutions in Coping with Extreme Meteorological Events in Agricultural Production, and Challenges Remaining for the Use of Science to Contribute to Problem Analyses and Designing Valuable Solutions in This Context: Cropping Under Cover

Kees Stigter 815

III.6.B.(ii) Combating Disasters in Covered Cropping Systems

Zheng Dawei and Kees Stigter (with a Box contributed by Zheng Dawei) 821

III.6.B.(iii) Covering Crops to Improve Growth: Some Essential Experience

Kees Stigter (mainly choosing and editing material collected by Ernst Van Heurn and Kees Van der Post) 825

III.6.B.(iv) Selection Processes of (Changes in) Covered Cropping Patterns

Gerard P.A. Bot (with a Box contributed by Kees Stigter) 829

III.6.C Other Aspects: Fisheries and Aquaculture, Urban Agriculture, Precision Farming

III.6.C.(i) Problems and Solutions in Coping with Extreme Meteorological Events in Fisheries and Aquaculture, and Challenges Remaining for the Use of Science to Contribute to Problem Analyses and Designing Valuable Solutions in This Context of Fisheries and Aquaculture

Kees Stigter and Claude E. Boyd 837

III.6.C.(ii) Agrometeorology and Urban Agriculture

Kees Stigter 843

III.6.C.(iii) “Paleez Khoursheed”: Agrometeorology for Precision Farming in Iran

Alireza Sodagari and Kees Stigter 849

PART IV METHODS AS TOOLS AND APPROACHES SUCCESSFULLY USED IN APPLICATIONS LEADING TO AGROMETEOROLOGICAL SERVICES

IV.1 Introduction to Part IV

Kees Stigter 857
IV.2 Ethics and Policies .. 869
Kees Stigter

IV.3 A Basic View on Models of Nature and the Concept
of “Sustainability” .. 877
Tor Håkon Sivertsen and Janis Gailis

IV.4 Expert Systems ... 885
Andrew Challinor (with a Box contributed by Kees Stigter)

IV.5 Education, Training and Extension 893
Kees Stigter

IV.6 Meteorological Data to Support Farming Needs 901
Raymond P. Motha

IV.7 Agricultural Physics ... 909
Gerard P.A. Bot (with a Box contributed by Kees Stigter)

IV.8 Agricultural Chemistry in Agrometeorology: Relations
with Groundwater Contamination 919
Tibor Stigter

IV.9 Field Quantification ... 929
Kees Stigter (with Boxes contributed by Tomáš Orfánus and Raymond
P. Motha)

IV.10 Statistics and Agrometeorology: Introductory Issues and Cases . . . 939
Roger Stern

and Cases .. 949
Olga C. Penalba

IV.12 Climate Prediction and Weather Forecasting 959
Nathaniel Logar

IV.13 Examples of Agrometeorological Decision Support Developed
and Used in South America 965
Orivaldo Brunini, Mário José Pedro, Jr., Dalziza De Oliveira, Marcelo Bento
Paes De Camargo, Glauco De Souza Rolim, and Paulo Henrique Caramori

IV.14 Global Potentials for Greenhouse Gas Mitigation in Agriculture . . . 977
Julian Dumanski, Raymond L. Desjardins, Rattan Lal, Pedro Luiz De Freitas,
Pierre Gerber, Henning Steinfeld, Louis Verchot, Gerald E. Schuman, Justin
D. Derner, and Mark Rosegrant (with a Box contributed by R. Lal)
IV.15 Strategies and Economies for Greenhouse Gas Mitigation in Agriculture ... 983
Julian Dumanski, Raymond L. Desjardins, Rattan Lal, Pedro Luiz De Freitas, Pierre Gerber, Henning Steinfeld, Louis Verchot, Gerald E. Schuman, Justin D. Derner, and Mark Rosegrant (Box by all)

IV.16 Supporting Evidence for Greenhouse Gas Mitigation in Agriculture ... 989
Julian Dumanski, Raymond L. Desjardins, Rattan Lal, and Mark Rosegrant (with Boxes contributed by P.L. De Freitas, J.N. Landers, P. Gerber, H. Steinfeld, L. Verchot, G.E. Schuman, J.D. Derner)

IV.17 Modeling and Simulation .. 997
Tomáš Orfánus

IV.18 Monitoring and Early Warning ... 1005
Andries Rosema, Marjolein De Weirdt, and Steven Foppes

IV.19 Remote Sensing ... 1013
Andres C. Ravelo and Ernesto G. Abril

IV.20 Geoinformatics for Evaluating Erosive Rainfall Hazards in Uplands Crops: Preliminary Decision Making 1025
Nazzareno Diodato, Michele Ceccarelli, and Gianni Bellocchi

Index ... 1033