Contents

1 Drug Discovery from Plants
A.A. Salim, Y.-W. Chin and A.D. Kinghorn

1.1 The Role of Plants in Human History 1
1.2 The Role of Plant-Derived Compounds in Drug Development .. 4
1.2.1 Plant Secondary Metabolites as Drug Precursors 4
1.2.2 Plant Secondary Metabolites as Drug Prototypes 6
1.2.3 Plant Secondary Metabolites as Pharmacological Probes 8
1.3 Recent Developments in Drug Discovery from Plants 9
1.3.1 New Plant-Derived Drugs Launched Since 2001 9
1.3.2 Examples of Plant-Derived Compounds Currently Involved in Clinical Trials ... 11
1.3.3 Plant Extracts Currently Involved in Clinical Trials 15
1.4 Recent Trends and Future Directions 18

2 Grapevine Stilbenes and Their Biological Effects
P. Waffo-Teguo, S. Krisa, T. Richard and J.-M. Mérillon

2.1 Introduction .. 25
2.2 Epidemiology .. 26
2.3 Chemistry of Stilbenes 27
2.3.1 Characterisation .. 27
2.3.1.1 Monomers ... 27
2.3.1.2 Oligomers .. 29
2.3.2 Biosynthetic Pathway 32
2.3.3 Distribution in Vitis vinifera 33
2.3.4 Determination of Stilbenes in Wine 33
2.4 Biological and Pharmacological Activities 35
2.4.1 Bioavailability and Metabolism 35
2.4.2 Cardiovascular Protection 39
2.4.2.1 Antioxidant Activity 39
2.4.2.2 Antithrombotic and Vasoprotective Properties 41
2.4.2.3 Biological Activities after Ingestion of Polyphenols or Wine .. 42
2.4.3 Cancer Chemoprevention 43
2.4.4 Neurodegenerative Diseases 46
2.5 Conclusion ... 49
3 Research into Isoflavonoid Phyto-oestrogens
in Plant Cell Cultures
M.T. Luczkiewicz

3.1 Introduction ... 56
3.2 The Influence of the Basic Experimental Media
on the Biosynthesis of Isoflavones in In Vitro Cultures 57
3.3 The Influence of Physical Factors
on the Biosynthesis and Accumulation of Isoflavonoids
in In Vitro Cultures ... 59
3.4 The Effect of Technological Procedures on the Biosynthesis
and Accumulation of Isoflavonoids in In Vitro Cultures 60
3.4.1 Elicitation ... 61
3.4.2 Supplementation with Biosynthesis Precursors 70
3.4.3 Biotransformation ... 71
3.4.4 Genetic Modifications .. 73
3.5 In Vitro Cultures of Legume Plants Oriented for Selective
Production of Phyto-oestrogens .. 77

4 Secondary Metabolite Production from Plant Cell Cultures:
the Success Stories of Rosmarinic Acid and Taxol
S. Kintzios

4.1 Introduction: Cell Factories at the Cross Point 86
4.2 Rosmarinic Acid ... 87
4.2.1 General Information ... 87
4.2.2 Historical Development of In Vitro RA Production –
a Brief Overview ... 87
4.2.3 Stimulation of Biosynthetic Pathways Leads to Enhanced RA
Accumulation In Vitro ... 88
4.2.4 Is RA Biosynthesis Growth Dependent? 89
4.2.5 Is RA Accumulation Related to Culture Differentiation? 90
4.2.6 Recent Attempts to Scale Up RA Production 91
4.2.7 RA Production in Immobilized Cell Cultures 92
4.3 Taxol .. 92
4.3.1 General Information ... 92
4.3.2 Historical Development of In Vitro Taxol Production –
a Brief Overview ... 93
4.3.3 Stimulation of Biosynthetic Pathways Leads
to Enhanced Taxol Accumulation In Vitro 94
4.3.4 Is Taxol Biosynthesis Growth and Differentiation Dependent? 96
4.3.5 Recent Attempts to Scale Up Taxol Production 97
4.3.6 Taxol Production in Immobilized Cell Cultures 97
4.4 Conclusions ... 98
5 Guggulsterone: a Potent Natural Hypolipidemic Agent from Commiphora wightii – Problems, Perseverance, and Prospects
K.G. Ramawat, M. Mathur, S. Dass and S. Sutha

5.1 Introduction ... 102
5.2 Distribution .. 102
5.3 Biology .. 102
5.4 Gum-Resin Production 103
5.5 Chemistry .. 104
5.6 Methods of Analysis 104
5.6.1 Thin-Layer Chromatography 104
5.6.2 High-Performance Liquid Chromatography 109
5.7 Traditional Therapeutic Uses 109
5.8 Pharmacology ... 110
5.8.1 Animal and Clinical Trials 110
5.8.2 Mechanism of Action 111
5.8.3 Other Potential Activities 112
5.8.4 Toxicity ... 113
5.9 Biotechnological Approaches 113
5.9.1 Micropropagation 113
5.9.2 Somatic Embryogenesis 114
5.9.3 Resin Canal Formation 115
5.9.4 Guggulsterone Production 115
5.10 Future Prospects 119

6 Silybum marianum (L.) Gaertn: the Source of Silymarin
P. Corchete

6.1 Introduction ... 124
6.2 Botany .. 125
6.3 Chemical Composition of S. marianum Fruits 126
6.4 Pharmacology of Silymarin 130
6.4.1 Mechanisms of Action 131
6.4.1.1 Antioxidant Activity 131
6.4.1.2 Effects on Hepatocyte Membranes and Cellular Permeability 131
6.4.1.3 Effects on Receptor Binding of Toxins and Drugs 131
6.4.1.4 Stimulation of Protein Synthesis 132
6.4.1.5 Inhibition of Cell Proliferation in Hepatic Fibrosis 132
6.4.1.6 Anti-inflammatory Activity 132
6.4.2 Pharmacological Applications 132
6.4.2.1 Hepatoprotective Action 132
6.4.2.2 Hypocholesterolemic Action 134
6.4.2.3 Chemopreventive and Anticarcinogenic Effects 134
6.4.2.4 Anti-inflammatory Action 136
6.4.2.5 Other Actions 137
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.3</td>
<td>Bioavailability</td>
<td>138</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Toxicology</td>
<td>139</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Therapeutics</td>
<td>139</td>
</tr>
<tr>
<td>6.5</td>
<td>Biotechnology</td>
<td>140</td>
</tr>
<tr>
<td>7</td>
<td>The Production of Dianthrones and Phloroglucinol Derivatives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in St. John's Wort</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Kirakosyan, D.M. Gibson, and P.B. Kaufman,</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>149</td>
</tr>
<tr>
<td>7.2</td>
<td>Dianthrone and Phloroglucinol Derivatives Family of Compounds in Hypericum perforatum</td>
<td>150</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Botany of Hypericum</td>
<td>152</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Medicinal Uses of Hypericin and Hyperforin</td>
<td>152</td>
</tr>
<tr>
<td>7.3</td>
<td>Biotechnology for the Production of Hypericin and Hyperforin</td>
<td>154</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Biosynthesis of Hypericin and Hyperforin in Mature Plants</td>
<td>154</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Plant Cell Biotechnology</td>
<td>156</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Influences on Hypericin and Hyperforin Productivity by Other Factors</td>
<td>159</td>
</tr>
<tr>
<td>7.3.4</td>
<td>New Directions for Hypericin and Hyperforin Production</td>
<td>161</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusions</td>
<td>162</td>
</tr>
<tr>
<td>8</td>
<td>Production of Alkaloids in Plant Cell and Tissue Cultures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Laurain-Mattar</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>8.2</td>
<td>Correlation Between Organogenesis, Somatic Embryogenesis and Isoquinoline Alkaloid Accumulation</td>
<td>168</td>
</tr>
<tr>
<td>8.3</td>
<td>Hairy Roots and Tropane and Morphinan Alkaloid Accumulation</td>
<td>170</td>
</tr>
<tr>
<td>8.4</td>
<td>Conclusion and Perspective</td>
<td>171</td>
</tr>
<tr>
<td>9</td>
<td>Bacopa monnieri, a Nootropic Drug</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. Rajani</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>175</td>
</tr>
<tr>
<td>9.2</td>
<td>Chemical Constituents</td>
<td>176</td>
</tr>
<tr>
<td>9.3</td>
<td>Analysis of Saponins of B. monnieri</td>
<td>184</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Pharmacological Studies</td>
<td>184</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Clinical Studies</td>
<td>188</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Concluding Remarks</td>
<td>189</td>
</tr>
<tr>
<td>9.4</td>
<td>Biotechnology and Tissue Culture Studies on B. monniera</td>
<td>190</td>
</tr>
</tbody>
</table>
10 Chemical Profiling of *Nothapodytes nimmoniana* for Camptothecin, an Important Anticancer Alkaloid: Towards the Development of a Sustainable Production System

R. Uma Shaanker, B.T. Ramesha, G. Ravikanth, R. P. Gunaga, R. Vasudev and K. N. Ganeshaiah

10.1 Introduction ... 198
10.2 *N. nimmoniana*: Ecology and Distribution 201
10.3 Basic Patterns of Accumulation of CPT in *N. nimmoniana* 203
10.4 Chemical Profiling of Populations of *N. nimmoniana* for CPT 204
10.5 Modeling Habitat Suitability for CPT Production 207
10.6 Development of a Sustainable Extraction Approach 209
10.7 Conclusions ... 210

11 Colchicine – an Overview for Plant Biotechnologists

S. Ghosh and S. Jha

11.1 Introduction ... 216
11.2 The Alkaloid Colchicine 218
11.3 Toxicity of Colchicine 218
11.4 Biological Effects of Colchicine 219
11.5 Colchicine as a Medicine 222
11.6 Botanical Use of Colchicine 222
11.7 Chemistry of Colchicine 223
11.8 Occurrence .. 225
11.9 Biotechnological Approaches for the Production of Colchicine 225
11.10 Conclusion .. 228

12 In Vitro Azadirachtin Production

S. Srivastava and A. K. Srivastava

12.1 Introduction ... 234
12.2 Chemistry of Azadirachtin 236
12.3 Mode of Action of Azadirachtin 237
12.4 Biosynthetic Pathway for Azadirachtin 238
12.5 Qualitative and Quantitative Analysis of Azadirachtin 238
12.6 Availability of Azadirachtin 242
12.7 Plant Cell/Tissue Culture: an Alternative for Azadirachtin Production ... 243
12.7.1 Azadirachtin Production from Plant Cell/Tissue Cultures of *Azadirachta indica* 243
12.7.2 Yield Improvement Strategies 244
12.7.2.1 Strain Improvement and Selection 245
12.7.2.2 Media Compositions and Culture Conditions 245
12.7.2.3 Application of Elicitors, Precursors and Permeabilising Agents
12.7.2.4 Genetic Engineering Approach
12.7.2.5 Somatic Embryogenesis and Regeneration
12.7.2.6 Two-Phase (Stage) Systems
12.7.2.7 Immobilisation
12.8 Stability of Azadirachtin
12.9 Scale-up of In Vitro Azadirachtin Production
12.10 Conclusion

13 Arabinogalactan Protein and Arabinogalactan: Biomolecules with Biotechnological and Therapeutic Potential
A. Pal

13.1 Introduction
13.2 Biological Activities of AGP
13.3 Role of AGPs in Reproductive Organ Development
13.4 Signaling Role of AGP
13.5 Abiotic Stress Tolerance Conferred by AGP
13.6 Probable Role in PCD
13.7 Commercial Uses of Gum Arabic
13.8 AG as Dietary Fiber and Prebiotics
13.9 AG as Immunomodulators and Immunity Enhancers
13.10 Echinacea-AG as a Nutraceutical
13.11 Other Uses of AG
13.12 Scope of Exploiting the Potentials of AGP and AG in Plant Biotechnology and Therapeutics
13.13 Concluding Remarks

14 Hairy Roots: a Powerful Tool for Plant Biotechnological Advances
S. Guillon, J. Trémouillaux-Guiller, P.K. Pati, and P. Gantet

14.1 Introduction
14.2 Hairy Roots Are on the Way towards an Experimental Model
14.3 Improvement in the Productivity of Hairy Roots: Biotic and Abiotic Treatments or Metabolite Trapping
14.4 Potential Discovery of Metabolic Genes from Transcriptome Analysis of T-DNA Activation Tagging or Elicited Hairy Roots
14.5 RNA Silencing via Hairy Root: a Powerful Tool for Loss-of-Function Analyses of Genes
14.6 Metabolic Engineering of the Hairy Root System
14.7 Hairy Roots: A Novel System for Molecular Farming
14.8 Phytoremediation Process for Cleaning up the Environment and More Knowledge on Root Adsorption
14.9 Scale up and Technological Integration into Industry
15 Hairy Roots of *Catharanthus roseus*: Efficient Routes to Monomeric Indole Alkaloid Production
S. Guillon, P. Gantet, M. Thiersault, M. Rideau and J. Trémouillaux-Guiller

15.1 Introduction .. 286
15.2 Materials and Methods 286
 15.2.1 Bacterial Strain .. 286
 15.2.2 Plant Material ... 287
 15.2.3 Hairy Root Induction 287
 15.2.4 Liquid Hairy Root Culture 287
 15.2.5 Methyl Jasmonate Treatment 287
 15.2.6 Alkaloid Identification by Ceric Ammonium Sulphate Reagent 288
 15.2.7 Serpentine and Ajmalicine Content Determination by Spectrofluorometry 288
 15.2.8 Catharanthine Content Determination by High-Performance Liquid Chromatography Analysis .. 288
 15.2.9 Statistical Analysis 289
15.3 Results and Discussion 289
 15.3.1 Genetic Transformation of *Catharanthus* Leaves 289
 15.3.2 Alkaloid Profiles 291
 15.3.3 Alkaloid Contents 292
15.4 Conclusion .. 294

16 Roseroot (*Rhodiola rosea* L.): Effect of Internal and External Factors on Accumulation of Biologically Active Compounds
Z. Węglarz, J.L. Przybył and A. Geszprych

16.1 Introduction .. 298
16.2 Plant Characteristics 298
16.3 Intraspecific Variability 300
 16.3.1 Distribution of Phenolic Compounds in Rhizomes and Roots 300
 16.3.2 Quality of Raw Material of Different Origin 303
 16.3.3 Individual Variation 304
16.4 Accumulation of Biomass and Biologically Active Compounds in the Underground Organs of Roseroot During Plant Development .. 305
16.5 Effect of Ecological Factors on the Accumulation of Biomass and Biologically Active Compounds in the Underground Organs of Roseroot .. 308
16.6 Effect of Post-harvest Treatment on the Quality of Raw Material and Extracts .. 310
17 Apoptosis and Plant-Derived Pharmaceuticals
L.F. Brisson

17.1 Introduction .. 317
17.1.1 Molecular Regulation of Apoptosis 317
17.2 Plant Antitumoral Substances 318
17.2.1 Plant Substances ... 318
17.2.2 Chemotherapeutic Drugs 319
17.2.2.1 Taxanes .. 319
17.2.2.2 Vinca Alkaloids 320
17.2.3 Chemopreventive Agents: Catechin and its Derivatives 321
17.3 Conclusion ... 322

18 The Indian Herbal Drugs Scenario in Global Perspectives
K.G. Ramawat and S. Goyal

18.1 Introduction .. 325
18.2 Indian System of Medicine 328
18.3 World-Wide Use of Medicinal Aromatic Plants 336
18.4 Supply and Demand of Medicinal Plants 337
18.5 Medicinal Plant Biodiversity 338
18.6 Traditional Medicine in Healthcare 340
18.7 Indian Pharmaceutical Industries 341
18.8 Quality of Herbal Drugs 342
18.9 Concluding Remarks .. 343

19 Phytochemical Standardization of Herbal Drugs and Polyherbal Formulations
M. Rajani and N.S. Kanaki

19.1 Introduction .. 349
19.1.1 Herbal drugs ... 349
19.1.2 Trade Scenario .. 350
19.1.3 Bottlenecks and Steps to be Taken 350
19.1.4 Strategy .. 351
19.1.5 Status of Herbal Drugs in Pharmacopoeias 351
19.1.5.1 Official .. 352
19.1.5.2 Others ... 352
19.2 Phytochemical Standardization 352
19.2.1 Sample Preparation 353
19.2.2 Preliminary Screening for Chemical Groups
and Quantification of Chemical Groups 354
19.2.3 Phytochemical Profiles – Fingerprinting 354
19.2.3.1 Multiple Marker-Based Fingerprinting 355
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2.4</td>
<td>Marker Compound Analysis</td>
<td>357</td>
</tr>
<tr>
<td>19.2.4.1</td>
<td>Marker Compounds</td>
<td>357</td>
</tr>
<tr>
<td>19.2.4.2</td>
<td>Quantification of Marker Compounds</td>
<td>357</td>
</tr>
<tr>
<td>19.2.5</td>
<td>Multiple Marker-Based Evaluation</td>
<td>358</td>
</tr>
<tr>
<td>19.2.6</td>
<td>Polyherbal Formulations</td>
<td>359</td>
</tr>
<tr>
<td>19.2.7</td>
<td>Hyphenated Techniques</td>
<td>361</td>
</tr>
<tr>
<td>19.2.8</td>
<td>Reference Compounds</td>
<td>364</td>
</tr>
<tr>
<td>19.3</td>
<td>Some Examples</td>
<td>364</td>
</tr>
<tr>
<td>19.3.1</td>
<td>Raw Material</td>
<td>364</td>
</tr>
<tr>
<td>19.3.1.1</td>
<td>Ammoniacum Gum</td>
<td>364</td>
</tr>
<tr>
<td>19.3.1.2</td>
<td>Cinchona officinalis Stem Bark</td>
<td>365</td>
</tr>
<tr>
<td>19.3.2</td>
<td>Formulation</td>
<td>366</td>
</tr>
<tr>
<td>19.3.2.1</td>
<td>Chandraprabhavati</td>
<td>366</td>
</tr>
<tr>
<td>19.4</td>
<td>Conclusion</td>
<td>366</td>
</tr>
</tbody>
</table>

Subject Index .. 371
Bioactive Molecules and Medicinal Plants
Ramawat, K.G.; Mérillon, J.-M. (Eds.)
2008, XXIII, 379 p., Hardcover
ISBN: 978-3-540-74600-3