Contents

1 The Chemistry of Algal Secondary Metabolism 1
 J.A. Maschek and B.J. Baker
 1.1 Introduction ... 1
 1.2 Conceptual Framework 1
 1.2.1 Natural Products 1
 1.2.2 Natural Product Names 3
 1.2.3 Bioactivity of Natural Products 5
 1.3 Compound Classes 7
 1.3.1 General Overview 7
 1.3.2 Terpenes ... 8
 1.3.3 Polyketides 9
 1.3.4 Amino-Acid-Derived Natural Products 10
 1.3.5 Shikimates 11
 1.3.6 Miscellaneous Classes of Algal Natural Products . 11
 1.4 Algal Chemistry .. 11
 1.4.1 Natural Products Chemistry of Rhodophyta 12
 1.4.2 Natural Products Chemistry of Phaeophyta 14
 1.4.3 Natural Products Chemistry of Chlorophyta 16
 1.4.4 Natural Products Chemistry of Cyanobacteria
 and Microalgae 17
 1.5 Summary ... 19
 References .. 20

2 Macroalgal Chemical Defenses and Their Roles
 in Structuring Tropical Marine Communities 25
 R.C. Pereira and B.A. P. da Gama
 2.1 Introduction ... 25
 2.2 The Tropical Marine Environment 26
 2.3 Tropical Macroalgal Natural Products 27
 2.4 Tropical Chemically Defended Macroalgae 28
 2.5 Tropical Macroalgal Chemical Defenses
 and Community Structure 29
 2.5.1 Are Tropical Macroalgae Better Defended Than
 Their Counterparts? 39
2.5.2 The Causes and Effects of Ecological Dominance
2.5.3 Associational Defenses
2.5.4 Chemically Defended Isomorphic Macroalgal Life Stages
2.5.5 Intrapopulational Variation
2.5.6 Surface Ecology
2.5.7 Is Inducible Resistance to Herbivores Common Among Tropical Macroalgae?
2.5.8 The Invasive Potential of Chemically Defended Tropical Macroalgae
2.6 Conclusions

References

3 Macroalgal Chemical Defenses and Their Roles in Structuring Temperate Marine Communities
V. Jormalainen and T. Honkanen
3.1 Interactions in Diverse Macroalgal Communities
3.2 Defense Strategies
3.2.1 Induced Defenses against Herbivory
3.2.2 Within-Plant Variation in Defenses: Watch Your Valuables!
3.3 Consequences of Algal Defenses to Grazers
3.3.1 From Defenses to Herbivore Population Dynamics
3.3.2 Defenses as Selective Agents
3.4 Allelopathy in Space Competition and in Resisting Epibiotism
3.4.1 Epibiotism as a Natural Enemy
3.4.2 Community Context Matters: Interactions among Hosts, Epibiota, and Grazers
3.5 Case Study of F. vesiculosus in the Eutrophic Northern Baltic Sea: Genotypically Variable, Plastic Phlorotannins as Chemical Defenses
3.6 Conclusions
References

4 Macroalgal Chemical Defenses in Polar Marine Communities
C.D. Amsler, J.B. McClintock, and B.J. Baker
4.1 Introduction
4.2 Western Antarctic Peninsula
4.3 McMurdo Sound, Antarctica
4.4 The Arctic
References
5 Macroalgal and Cyanobacterial Chemical Defenses in Freshwater Communities
F.A. Camacho

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>105</td>
</tr>
<tr>
<td>5.2 Cyanobacteria and Macroalgae: Evolutionary and Ecological Perspectives</td>
<td>106</td>
</tr>
<tr>
<td>5.3 Cyanotoxin Structure and Synthesis</td>
<td>107</td>
</tr>
<tr>
<td>5.3.1 Hepatotoxins</td>
<td>107</td>
</tr>
<tr>
<td>5.3.2 Neurotoxins</td>
<td>108</td>
</tr>
<tr>
<td>5.4 Macroalgal Secondary Metabolites</td>
<td>110</td>
</tr>
<tr>
<td>5.5 Inducible Synthesis of Secondary Metabolites</td>
<td>111</td>
</tr>
<tr>
<td>5.6 Effects on Consumers</td>
<td>111</td>
</tr>
<tr>
<td>5.7 Allelopathic Effects</td>
<td>112</td>
</tr>
<tr>
<td>5.7.1 Allelopathy in Cyanobacteria</td>
<td>112</td>
</tr>
<tr>
<td>5.7.2 Allelopathic Effects of A. flos-aquae on a Motile Alga</td>
<td>113</td>
</tr>
<tr>
<td>5.7.3 Allelopathy in Algae</td>
<td>113</td>
</tr>
<tr>
<td>5.8 Secondary Metabolites and Trophic Interactions</td>
<td>114</td>
</tr>
<tr>
<td>5.9 Bioaccumulation of Metabolites at Higher Trophic Levels</td>
<td>115</td>
</tr>
<tr>
<td>5.10 Summary</td>
<td>115</td>
</tr>
<tr>
<td>References</td>
<td>116</td>
</tr>
</tbody>
</table>

6 New Perspectives for Addressing Patterns of Secondary Metabolites in Marine Macroalgae
K.N. Pelletreau and N.M. Targett

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Interpreting Patterns of Chemical Defense in the Marine Environment</td>
<td>121</td>
</tr>
<tr>
<td>6.2 A Brief Review of Macroscale Patterns of Algal Chemical Defenses</td>
<td>122</td>
</tr>
<tr>
<td>6.3 Patterns of Secondary Metabolites at the Microscale</td>
<td>125</td>
</tr>
<tr>
<td>6.3.1 Metabolite Distribution Within the Thallus</td>
<td>125</td>
</tr>
<tr>
<td>6.3.2 Temporal Responses Within Algae: Seconds to Weeks</td>
<td>128</td>
</tr>
<tr>
<td>6.4 Advances in the Characterization of Patterns of Chemical Defenses</td>
<td>130</td>
</tr>
<tr>
<td>6.4.1 Phylogeny Meets Ecology</td>
<td>130</td>
</tr>
<tr>
<td>6.4.2 Metabolic Similarities Between Algal Groups</td>
<td>132</td>
</tr>
<tr>
<td>6.4.3 The Use of Molecular Tools to Characterize Patterns of Gene Response Involved in Macroalgal Defenses</td>
<td>136</td>
</tr>
<tr>
<td>6.5 Conclusion</td>
<td>138</td>
</tr>
<tr>
<td>References</td>
<td>139</td>
</tr>
</tbody>
</table>
7 Macroalgal Models in Testing and Extending Defense Theories 147
H. Pavia and G.B. Toth
7.1 Introduction .. 147
7.2 Defense Theories .. 148
7.2.1 Optimal Defense Model 148
7.2.2 Carbon-Nutrient Balance Model 149
7.2.3 Growth-Differentiation Balance Model 149
7.3 The Status of Defense Models in Terrestrial Plant Ecology 150
7.4 Empirical Tests of Defense Theories in Marine Studies 151
7.4.1 Optimal Defense Model 151
7.4.2 Carbon-Nutrient Balance Model 161
7.4.3 Growth-Differentiation Balance Model 163
7.4.4 Tests of Hypotheses from More Than One Model 164
7.5 Summary and Conclusions 166
References .. 167
8 Ecological and Physiological Roles of Dimethylsulfoniopropionate and its Products in Marine Macroalgae 173
K.L. Van Alstyne
8.1 Introduction .. 173
8.2 Dimethylsulfoniopropionate 174
8.2.1 DMSP Synthesis .. 174
8.2.2 The Distribution of DMSP in Marine Macroalgae 176
8.2.3 Physiological and Ecological Functions of DMSP 177
8.3 The DMSP Cleavage Reaction and Its Products 178
8.3.1 The DMSP Cleavage Reaction 178
8.3.2 The Functional Significance of the DMSP Cleavage Reaction 179
8.4 Summary .. 188
References .. 188
9 Influence of Algal Secondary Metabolites on Plankton Community Structure 195
G. Pohnert
9.1 Introduction .. 195
9.2 Early Studies .. 196
9.3 General Considerations 197
9.4 Specific Aspects .. 198
9.5 Single Metabolites 199
9.6 Conclusions .. 199
References .. 200
10 Herbivore Offense in the Sea: The Detoxification and Transport of Secondary Metabolites .. 203
E.E. Sotka and K.E. Whalen

10.1 Introduction .. 203
10.2 Proximate Mechanisms of Herbivore Tolerance 204
 10.2.1 Defining “Tolerance” 204
 10.2.2 Mechanisms of Detoxification and Transport 205
10.3 Detoxification and Macroalgal-Herbivore Interactions 214
 10.3.1 Do Detoxification Rates Limit Feeding Rates of Large Grazers? 214
 10.3.2 Are Tropical Herbivores More Tolerant of Lipophilic Metabolites Than Are Temperate Herbivores? 215
 10.3.3 Is Host Breadth Mediated by Tolerance of Lipophilic Metabolites? 216
 10.3.4 Are There Phylogenetic Constraints on Tolerance of Lipophilic Metabolites? 218
 10.3.5 Do Herbivores “Eavesdrop” on Their Macroalgal Hosts? 219
10.4 Using Population-Level Variation in Herbivore Traits as an Analytical Tool .. 219
10.5 Conclusion .. 221
References .. 221

11 Secondary Metabolite Defenses Against Pathogens and Biofoulers .. 229
A.L. Lane and J. Kubanek

11.1 Introduction .. 229
11.2 Defenses Against Settlement and Attachment 230
 11.2.1 Larval Attachment Defenses of Ula reticulata 231
 11.2.2 Disruption of Microbial Communication Pathways: An Effective Inhibitor of Settlement and Attachment 233
11.3 Lethal and Growth-Inhibitory Antimicrobials 234
 11.3.1 Lobophorolide: A Potent Antifungal Chemical Defense .. 234
 11.3.2 Antifungal Chemical Defenses of Penicillus spp 236
11.4 Future Perspective and Conclusions 238
References .. 239

12 Oxidative Burst and Related Responses in Biotic Interactions of Algae .. 245
P. Potin

12.1 Introduction .. 245
12.2 Reactive Oxygen Species and Detection Methods 246
12.3 Inducers and Sources of ROS Emission in Biotic Interactions of Marine Algae .. 248
 12.3.1 Elicitors and Sources of ROS in Terrestrial Plant-Pathogen Interactions 248
 12.3.2 A Growing Repertoire of ROS Inducers 249
 12.3.3 New Insights into ROS Sources in Algae 249
12.4 Oxidative-Burst-Associated Responses 254
 12.4.1 Emission of Volatile Halogenated Organic Compounds ... 254
 12.4.2 Lipid Peroxidation and Generation of Oxylipins .. 255
 12.4.3 Phenolics, Cell-Wall Cross-Linking, and Responses to Wounding 256
 12.4.4 Gene-Regulated Responses 258
12.5 Functions of the Oxidative Burst in an Ecological Context, the Hallmark of Parasite or Disease Resistance 259
 12.5.1 Ecological Functions of the Oxidative Burst 259
 12.5.2 Toward New Approaches to Test the Ecological Relevance of Oxidative-Burst-Associated Responses 262
12.6 Conclusions .. 263
References .. 264

13 Defense Strategies of Algae and Cyanobacteria Against Solar Ultraviolet Radiation .. 273
 U. Karsten
 13.1 Introduction .. 273
 13.1.1 Solar Spectrum and UVR 274
 13.1.2 UVR in Aquatic Ecosystems 275
13.2 Effects of UVR on Algae 276
 13.2.1 Molecular Targets .. 276
 13.2.2 Induction of Reactive Oxygen Species 277
 13.2.3 Ultrastructure of Cells 277
 13.2.4 Physiological Processes 278
 13.2.5 Ecological Consequences 278
13.3 Protective Mechanisms to Counteract Harmful UV Effects .. 279
 13.3.1 Avoidance ... 279
 13.3.2 Physiological Acclimation 281
 13.3.3 Physical Properties 281
 13.3.4 DNA Repair .. 281
 13.3.5 De Novo Protein Biosynthesis 282
 13.3.6 Antioxidative Potential 282
 13.3.7 Photoprotective Substances 283
Contents

13.4 Conclusions ... 291
References ... 291

14 Algal Sensory Chemical Ecology 297
C.D. Amsler
14.1 Introduction to Sensory Chemical Ecology 297
14.2 Sexual Communication ... 298
 14.2.1 Gamete Attraction ... 298
 14.2.2 Inducers of Gamete Production or Release 299
14.3 Chemoattraction to Nutrients 300
14.4 Sensory Ecology of Ulva Spores 301
14.5 Chemical and Physicochemical Modulation of Spore
 Settlement in Brown Algae 303
References ... 305

Index ... 311
Algal Chemical Ecology
Amsler, C.D. (Ed.)
2008, XVII, 313 p., Hardcover
ISBN: 978-3-540-74180-0