
1

Propositional Logic

A deduction is speech in which, certain things having been supposed,
something different from the things supposed results of necessity be-
cause of their being so.

— Aristotle
Prior Analytics, 4th century BC

A calculus is a set of symbols and a system of rules for manipulating the
symbols. In an interesting calculus, the symbols and rules have meaning in
some domain that matters. For example, the differential calculus defines rules
for manipulating the integral symbol over a polynomial to compute the area
under the curve that the polynomial defines. Area has meaning outside of the
calculus; the calculus provides the tool for computing such quantities. The
domain of the differential calculus, loosely speaking, consists of real numbers
and functions over those numbers.

Computer scientists are interested in a different domain and thus require
a different calculus. The behavior of programs, or computation, is a computer
scientist’s chief concern. What is an appropriate domain for studying com-
putation? The basic entity of the domain is state: roughly, the assignment of
values (for example, Booleans, integers, or addresses) to variables. Pairs of
states comprise transitions. A computation is a sequence of states, each ad-
jacent pair of which is a transition. A program defines the form of its states,
the set of transitions between states, and the set of computations that it can
produce. A program’s set of computations characterizes the program itself as
precisely as its source code. Chapter 5 studies these ideas in depth.

With a domain in mind, a computer scientist can now ask questions. Does
this program that accepts an array of integers produce a sorted array? In
other words, does each of the program’s computations have a state in which a
sorted array is returned? Does this program ever access unallocated memory?
Does this function always halt? To answer such questions, we need a calculus
to reason about computations.

4 1 Propositional Logic

This chapter and the next introduce the calculus that will be the basis for
studying computation in this book. In this chapter, we cover propositional
logic (PL); in the next chapter, we build on the presentation to define first-
order logic (FOL). PL and FOL are also known as propositional calculus
and predicate calculus, respectively, because they are calculi for reasoning
about propositions (“the sky is blue”, “this comment references itself”) and
predicates (“x is blue”, “y references z”), respectively. Propositions are either
true or false, while predicates evaluate to true or false depending on the values
given to their parameters (x, y, and z).

Just as differential calculus has a set of symbols, a set of rules, and a
mapping to reality that provides its meaning, propositional logic has its own
symbols, rules of inference, and meaning. Sections 1.1 and 1.2 introduce the
syntax and semantics (meaning) of PL formulae. Then Section 1.3 discusses
two concepts that are fundamental throughout this book, satisfiability (Is
this formula ever true?) and validity (Is this formula always true?), and the
rules for computing whether a PL formula is satisfiable or valid. Rules for
manipulating PL formulae, some of which preserve satisfiability and validity,
are discussed in Section 1.5 and applied in Section 1.6.

1.1 Syntax

In this section, we introduce the syntax of PL. The syntax of a logical lan-
guage consists of a set of symbols and rules for combining them to form
“sentences” (in this case, formulae) of the language.

The basic elements of PL are the truth symbols ⊤ (“true”) and ⊥
(“false”) and the propositional variables, usually denoted by P , Q, R,
P1, P2, A countably infinite set of propositional variable symbols exists.
Logical connectives, also called Boolean connectives, provide the expres-
sive power of PL. A formula is simply ⊤, ⊥, or a propositional variable P ; or
the application of one of the following connectives to formulae F , F1, or F2:

• ¬F : negation, pronounced “not”;
• F1 ∧ F2: conjunction, pronounced “and”;
• F1 ∨ F2: disjunction, pronounced “or”;
• F1 → F2: implication, pronounced “implies”;
• F1 ↔ F2: iff, pronounced “if and only if”.

Each connective has an arity (the number of arguments that it takes): nega-
tion is unary (it takes one argument), while the other connectives are binary
(they take two arguments). The left and right arguments of → are called the
antecedent and consequent, respectively.

Some common terminology is useful. An atom is a truth symbol ⊤, ⊥ or
propositional variable P , Q, A literal is an atom α or its negation ¬α. A
formula is a literal or the application of a logical connective to a formula or
formulae.

1.1 Syntax 5

Formula G is a subformula of formula F if it occurs syntactically within
G. More precisely,

• the only subformula of P is P ;
• the subformulae of ¬F are ¬F and the subformulae of F ;
• and the subformulae of F1∧F2, F1∨F2, F1 → F2, F1 ↔ F2 are the formula

itself and the subformulae of F1 and F2.

Notice that every formula is a subformula of itself. The strict subformulae
of a formula are all its subformulae except itself.

Example 1.1. Consider the formula

F : (P ∧Q) → (P ∨ ¬Q) .

It contains two propositional variables, P and Q. Each instance of P and Q
is an atom and a literal. ¬Q is a literal, but not an atom. F has six distinct
subformulae:

F , P ∨ ¬Q , ¬Q , P ∧Q , P , Q .

Its strict subformulae are all of its subformulae except F itself. �

Parentheses are cumbersome. We define the relative precedence of the logi-
cal connectives from highest to lowest as follows: ¬, ∧, ∨,→,↔. Additionally,
let → and ↔ associate to the right, so that P → Q→ R is the same formula
as P → (Q→ R).

Example 1.2. Abbreviate F of Example 1.1 as

F ′ : P ∧Q → P ∨ ¬Q .

Also,

P1 ∧ ¬P2 ∧ ⊤ ∨ ¬P1 ∧ P2

stands for

(P1 ∧ ((¬P2) ∧ ⊤)) ∨ ((¬P1) ∧ P2) .

Finally,

P1 → P2 → P3

abbreviates

P1 → (P2 → P3) .

�

6 1 Propositional Logic

1.2 Semantics

So far, we have considered the syntax of PL. The semantics of a logic provides
its meaning. What exactly is meaning? In PL, meaning is given by the truth
values true and false, where true 6= false. Our objective is to define how to
give meaning to formulae.

The first step in defining the semantics of PL is to provide a mechanism
for evaluating the propositional variables. An interpretation I assigns to
every propositional variable exactly one truth value. For example,

I : {P 7→ true, Q 7→ false, . . .}

is an interpretation assigning true to P and false to Q, where . . . elides the
(countably infinitely many) assignments that are not relevant to us. That is, I
assigns to every propositional variable available to us (and there are countably
infinitely many) a value. We usually do not write the elision. Clearly, many
interpretations exist.

Now given a PL formula F and an interpretation I, the truth value of F
can be computed. The simplest manner of computing the truth value of F is
via a truth table. Let us first examine truth tables that indicate how to eval-
uate each logical connective in terms of its arguments. First, a propositional
variable gets its truth value immediately from I. Now consider the possible
evaluations of F : it is either true or false. How is ¬F evaluated? The following
table summarizes the possibilities, where 0 corresponds to the value false, and
1 corresponds to true:

F ¬F
0 1
1 0

The other connective can be defined similarly given values of F1 and F2:

F1 F2 F1 ∧ F2 F1 ∨ F2 F1 → F2 F1 ↔ F2

0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 0
1 1 1 1 1 1

In particular, F1 → F2 is false iff F1 is true and F2 is false. (Throughout the
book, we use the word “iff” to abbreviate the phrase “if and only if”; one can
also read it as “precisely when”.)

Example 1.3. Consider the formula

F : P ∧Q → P ∨ ¬Q

and the interpretation

1.2 Semantics 7

I : {P 7→ true, Q 7→ false} .

To evaluate the truth value of F under I, construct the following table:

P Q ¬Q P ∧Q P ∨ ¬Q F

1 0 1 0 1 1

The top row is given by the subformulae of F . I provides values for the first
two columns; then the semantics of PL provide the values for the remainder
of the table. Hence, F evaluates to true under I. �

This tabular notation is convenient, but it is unsuitable for the predicate
logic of Chapter 2. Instead, we introduce an inductive definition of PL’s
semantics that will extend to Chapter 2. An inductive definition defines the
meaning of basic elements first, which in the case of PL are atoms. Then it
assumes that the meaning of a set of elements is fixed and defines a more
complex element in terms of these elements. For example, in PL, F1 ∧ F2 is a
more complex formula than either of the formulae F1 or F2.

Recall that we want to compute whether F has value true under inter-
pretation I. We write I |= F if F evaluates to true under I and I 6|= F if
F evaluates to false. To start our inductive definition, define the meaning of
truth symbols:

I |= ⊤
I 6|= ⊥

Under any interpretation I, ⊤ has value true, and ⊥ has value false. Next,
define the truth value of propositional variables:

I |= P iff I[P] = true

P has value true iff the interpretation I assigns P to have value true.
Since an interpretation assigns a truth value to every propositional vari-

able, I assigns false to P when I does not assign true to P . Thus, we can
instead define the truth values of propositional variables as follows:

I 6|= P iff I[P] = false

Since true 6= false, both definitions yield the same (unique) truth values.
Having completed the base cases of our inductive definition, we turn to

the inductive step. Assume that formulae F , F1, and F2 have truth values.
From these formulae, evaluate the semantics of more complex formulae:

I |= ¬F iff I 6|= F
I |= F1 ∧ F2 iff I |= F1 and I |= F2

I |= F1 ∨ F2 iff I |= F1 or I |= F2

I |= F1 → F2 iff, if I |= F1 then I |= F2

I |= F1 ↔ F2 iff I |= F1 and I |= F2, or I 6|= F1 and I 6|= F2

8 1 Propositional Logic

In studying these definitions, it is useful to recall the earlier definitions given
by the truth tables, which are free of English ambiguities.

For implication, consider also the equivalent formulation

I 6|= F1 → F2 iff I |= F1 and I 6|= F2

The formula F1 → F2 has truth value true under I when either F1 is false
or F2 is true. It is false only when F1 is true and F2 is false. Our inductive
definition of the semantics of PL is complete.

Example 1.4. Consider the formula

F : P ∧Q → P ∨ ¬Q

and the interpretation

I : {P 7→ true, Q 7→ false} .

Compute the truth value of F as follows:

1. I |= P since I[P] = true
2. I 6|= Q since I[Q] = false
3. I |= ¬Q by 2 and semantics of ¬
4. I 6|= P ∧Q by 2 and semantics of ∧
5. I |= P ∨ ¬Q by 1 and semantics of ∨
6. I |= F by 4 and semantics of →

We considered the distinct subformulae of F according to the subformula
ordering: F1 precedes F2 if F1 is a subformula of F2. In that order, we
computed the truth value of F from its simplest subformulae to its most
complex subformula (F itself).

The final line of the calculation deserves some explanation. According to
the semantics for implication,

I |= F1 → F2 iff, if I |= F1 then I |= F2

the implication F1 → F2 has value true when I 6|= F1. Thus, line 5 is unnec-
essary for establishing the truth value of F . �

1.3 Satisfiability and Validity

We now consider a fundamental characterization of PL formulae.
A formula F is satisfiable iff there exists an interpretation I such that

I |= F . A formula F is valid iff for all interpretations I, I |= F . Determining
satisfiability and validity of formulae are important tasks in logic.

Satisfiability and validity are dual concepts, and switching from one to the
other is easy. F is valid iff ¬F is unsatisfiable. For suppose that F is valid;

1.3 Satisfiability and Validity 9

then for any interpretation I, I |= F . By the semantics of negation, I 6|= ¬F ,
so ¬F is unsatisfiable. Conversely, suppose that ¬F is unsatisfiable. For any
interpretation I, I 6|= ¬F , so that I |= F by the semantics of negation. Thus,
F is valid.

Because of this duality between satisfiability and validity, we are free to
focus on either one or the other in the text, depending on which is more
convenient for the discussion. The reader should realize that statements about
one are also statements about the other.

In this section, we present several methods of determining validity and
satisfiability of PL formulae.

1.3.1 Truth Tables

Our first approach to checking the validity of a PL formula is the truth-table
method. We exhibit this method by example.

Example 1.5. Consider the formula

F : P ∧Q → P ∨ ¬Q .

Is it valid? Construct a table in which the first row is a list of the subformulae
of F ordered according to the subformula ordering. Fill columns of proposi-
tional variables with all possible combinations of truth values. Then apply the
semantics of PL to fill the rest of the table:

P Q P ∧Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1
0 1 0 0 0 1
1 0 0 1 1 1
1 1 1 0 1 1

The final column, which represents the truth value of F under the possible
interpretations, is filled entirely with true. F is valid. �

Example 1.6. Consider the formula

F : P ∨Q → P ∧Q .

Construct the truth table:

P Q P ∨Q P ∧Q F

0 0 0 0 1
0 1 1 0 0
1 0 1 0 0
1 1 1 1 1

Because the second and third rows show that F can be false, F is invalid. �

10 1 Propositional Logic

1.3.2 Semantic Arguments

Our next approach to validity checking is the semantic argument method.
While more complicated than the truth-table method, we introduce it and
emphasize it throughout the remainder of the chapter because it is our only
method of evaluating the satisfiability and validity of formulae in Chapter 2.

A proof based on the semantic method begins by assuming that the given
formula F is invalid: hence, there is a falsifying interpretation I such that
I 6|= F . The proof proceeds by applying the semantic definitions of the logical
connectives in the form of proof rules. A proof rule has one or more premises
(assumed facts) and one or more deductions (deduced facts). An application
of a proof rule requires matching the premises to facts already existing in the
semantic argument and then forming the deductions. The proof rules are the
following:

• According to the semantics of negation, from I |= ¬F , deduce I 6|= F ; and
from I 6|= ¬F , deduce I |= F :

I |= ¬F
I 6|= F

I 6|= ¬F
I |= F

• According to the semantics of conjunction, from I |= F ∧G, deduce both
I |= F and I |= G; and from I 6|= F ∧ G, deduce I 6|= F or I 6|= G. The
latter deduction results in a fork in the proof; each case must be considered
separately.

I |= F ∧G

I |= F
I |= G

I 6|= F ∧G

I 6|= F | I 6|= G

• According to the semantics of disjunction, from I |= F ∨G, deduce I |= F
or I |= G; and from I 6|= F ∨ G, deduce both I 6|= F and I 6|= G. The
former deduction requires a case analysis in the proof.

I |= F ∨G

I |= F | I |= G

I 6|= F ∨G

I 6|= F
I 6|= G

• According to the semantics of implication, from I |= F → G, deduce
I 6|= F or I |= G; and from I 6|= F → G, deduce both I |= F and I 6|= G.
The former deduction requires a case analysis in the proof.

I |= F → G

I 6|= F | I |= G

I 6|= F → G

I |= F
I 6|= G

1.3 Satisfiability and Validity 11

• According to the semantics of iff, from I |= F ↔ G, deduce I |= F ∧G or
I 6|= F ∨ G; and from I 6|= F ↔ G, deduce I |= F ∧ ¬G or I |= ¬F ∧ G.
Both deductions require considering multiple cases.

I |= F ↔ G

I |= F ∧G | I 6|= F ∨G

I 6|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧G

• Finally, a contradiction occurs when following the above proof rules results
in the claim that an interpretation I both satisfies a formula F and does
not satisfy F .

I |= F
I 6|= F
I |= ⊥

Before explaining proofs in more detail, let us see several examples.

Example 1.7. To prove that the formula

F : P ∧Q → P ∨ ¬Q

is valid, assume that it is invalid and derive a contradiction. Thus, assume
that there is a falsifying interpretation I of F (such that I 6|= F). Then,

1. I 6|= P ∧Q → P ∨ ¬Q assumption
2. I |= P ∧Q by 1 and semantics of →
3. I 6|= P ∨ ¬Q by 1 and semantics of →
4. I |= P by 2 and semantics of ∧
5. I |= Q by 2 and semantics of ∧
6. I 6|= P by 3 and semantics of ∨
7. I 6|= ¬Q by 3 and semantics of ∨
8. I |= Q by 7 and semantics of ¬

Lines 4 and 6 contradict each other, so that our assumption must be wrong:
F is actually valid.

We can end the proof as soon as we have a contradiction. For example,

1. I 6|= P ∧Q → P ∨ ¬Q assumption
2. I |= P ∧Q by 1 and semantics of →
3. I 6|= P ∨ ¬Q by 1 and semantics of →
4. I |= P by 2 and semantics of ∧
5. I 6|= P by 3 and semantics of ∨

This argument is sufficient because a contradiction already exists. In other
words, the discovered contradiction closes the one branch of the proof. We
sometimes note the contradiction explicitly in the proof:

6. I |= ⊥ 4 and 5 are contradictory

�

12 1 Propositional Logic

Example 1.8. To prove that the formula

F : (P → Q) ∧ (Q→ R) → (P → R)

is valid, assume otherwise and derive a contradiction:

1. I 6|= F assumption
2. I |= (P → Q) ∧ (Q→ R) by 1 and semantics of →
3. I 6|= P → R by 1 and semantics of →
4. I |= P by 3 and semantics of →
5. I 6|= R by 3 and semantics of →
6. I |= P → Q by 2 and semantics of ∧
7. I |= Q→ R by 2 and semantics of ∧

There are two cases to consider from 6. In the first case,

8a. I 6|= P by 6 and semantics of →
9a. I |= ⊥ 4 and 8a are contradictory

In the second case,

8b. I |= Q by 6 and semantics of →

Now there are two more cases from 7. In the first case,

9ba. I 6|= Q by 7 and semantics of →
10ba. I |= ⊥ 8b and 9ba are contradictory

In the second case,

9bb. I |= R by 7 and semantics of →
10bb. I |= ⊥ 5 and 9bb are contradictory

All three branches of the proof are closed: F is valid. �

We introduce vocabulary for discussing semantic proofs. The reader need
not memorize these terms now; just refer to them as they are used. A line
L : I |= F or L : I 6|= F is a single statement in the proof, sometimes labeled
as in the examples. A line L is a direct descendant of a parent M if L is
directly below M in the proof. L is a descendant of M if M is L itself, if L is
a direct descendant of M , or if the parent of L is a descendant of M (in other
words, descendant is the reflexive and transitive closure of direct descendant).
M is an ancestor of L if L is a descendant of M . Several proof rules — the
second conjunction rule, the first disjunction rule, the first implication rule,
and both rules for iff — produce a fork in the argument, as the last example
shows. A proof thus evolves as a tree rather than linearly. A branch of the
tree is a sequence of lines descending from the root. A branch is closed if it
contains a contradiction, either explicitly as I |= ⊥ or implicitly as I |= G

1.3 Satisfiability and Validity 13

and I 6|= G for some formula G. Otherwise, the branch is open. A semantic
argument is finished when no more proof rules are applicable. It is a proof
of the validity of F if every branch is closed; otherwise, each open branch
describes a falsifying interpretation of F .

While the given proof rules are (theoretically) sufficient, derived proof
rules can make proofs more concise.

Example 1.9. The derived rule of modus ponens simplifies the proof of
Example 1.8. The rule is the following:

I |= F
I |= F → G
I |= G

In words, from I |= F and I |= F → G, deduce I |= G.
Using this rule, let us simplify the proof of the validity of

F : (P → Q) ∧ (Q→ R) → (P → R) .

We assume that it is invalid and try to derive a contradiction.

1. I 6|= F assumption
2. I |= (P → Q) ∧ (Q→ R) by 1 and semantics of →
3. I 6|= P → R by 1 and semantics of →
4. I |= P by 3 and semantics of →
5. I 6|= R by 3 and semantics of →
6. I |= P → Q by 2 and semantics of ∧
7. I |= Q→ R by 2 and semantics of ∧
8. I |= Q by 4, 6, and modus ponens
9. I |= R by 8, 7, and modus ponens
10. I |= ⊥ 5 and 9 are contradictory

This proof has only one branch. �

The truth-table and semantic methods can be used to check satisfiability.
For example, the truth table of Example 1.6 can be extended to show that

¬F : ¬(P ∨Q → P ∧Q)

is satisfiable:

P Q P ∨Q P ∧Q F ¬F
0 0 0 0 1 0
0 1 1 0 0 1
1 0 1 0 0 1
1 1 1 1 1 0

The second and third rows represent satisfying interpretations of ¬F . Addi-
tionally, the semantic argument in the following example shows that

14 1 Propositional Logic

G : ¬(P ∨Q → P ∧Q)

is satisfied by the discovered interpretation I, and thus that G is satisfiable.

Example 1.10. To prove that the formula

F : P ∨Q → P ∧Q

is valid, assume that F is invalid; then there is an interpretation I such that
I |= ¬F :

1. I 6|= P ∨Q → P ∧Q assumption
2. I |= P ∨Q by 1 and semantics of →
3. I 6|= P ∧Q by 1 and semantics of →

We have two choices to make. By 2 and the semantics of disjunction, either
P or Q must be true. By 3 and the semantics of conjunction, either P or Q
must be false. So there are two options: either P is true and Q is false, or P is
false and Q is true. We choose P to be true and Q to be false. Then,

4a. I |= P by 2 and semantics of ∨
5a. I 6|= Q by 3 and semantics of ∧

The only subformulae of P and Q are themselves, so the table is complete.
Yet we did not derive a contradiction. In fact, we found the interpretation

I : {P 7→ true, Q 7→ false}

for which I |= ¬F . Therefore, F is actually invalid. The interpretation I :
{P 7→ true, Q 7→ false} is a falsifying interpretation.

If our choice had resulted in a contradiction, then we would have had to
try the other choice for P and Q, in which P is false and Q is true. In general,
we stop either when we have found an interpretation or when we have closed
every branch. �

1.4 Equivalence and Implication

Just as satisfiability and validity are important properties of PL formulae,
equivalence and implication are important properties of pairs of formulae.
Two formulae F1 and F2 are equivalent if they evaluate to the same truth
value under all interpretations I. That is, for all interpretations I, I |= F1

iff I |= F2. Another way to state the equivalence of F1 and F2 is to assert
the validity of the formula F1 ↔ F2. We write F1 ⇔ F2 when F1 and F2 are
equivalent. F1 ⇔ F2 is not a formula; it simply abbreviates the statement “F1

and F2 are equivalent.”
We use the last characterization to prove that two formulae are equivalent.

1.4 Equivalence and Implication 15

Example 1.11. To prove that

P ⇔ ¬¬P ,

we prove that

P ↔ ¬¬P

is valid via a truth table:

P ¬P ¬¬P P ↔ ¬¬P
0 1 0 1
1 0 1 1

�

Example 1.12. To prove

P → Q ⇔ ¬P ∨Q ,

we prove that

F : P → Q ↔ ¬P ∨Q

is valid via a truth table:

P Q P → Q ¬P ¬P ∨Q F

0 0 1 1 1 1
0 1 1 1 1 1
1 0 0 0 0 1
1 1 1 0 1 1

�

Formula F1 implies formula F2 if I |= F2 for every interpretation I such
that I |= F1. Another way to state that F1 implies F2 is to assert the validity
of the formula F1 → F2. We write F1 ⇒ F2 when F1 implies F2. Do not
confuse the implication F1 ⇒ F2, which asserts the validity of F1 → F2, with
the PL formula F1 → F2, which is constructed using the logical operator →.
F1 ⇒ F2 is not a formula.

As with equivalences, we use the validity characterization to prove impli-
cations.

Example 1.13. To prove that

R ∧ (¬R ∨ P) ⇒ P ,

we prove that

16 1 Propositional Logic

F : R ∧ (¬R ∨ P) → P

is valid via a semantic argument. Suppose F is not valid; then there exists an
interpretation I such that I 6|= F :

1. I 6|= F assumption
2. I |= R ∧ (¬R ∨ P) by 1 and semantics of →
3. I 6|= P by 1 and semantics of →
4. I |= R by 2 and semantics of ∧
5. I |= ¬R ∨ P by 2 and semantics of ∧

There are two cases to consider. In the first case,

6a. I |= ¬R by 5 and semantics of ∨
7a. I |= ⊥ 4 and 6a are contradictory

In the second case,

6b. I |= P by 5 and semantics of ∨
7b. I |= ⊥ 3 and 6b are contradictory

Thus, our assumption that I 6|= F is wrong, and F is valid. �

1.5 Substitution

Substitution is a syntactic operation on formulae with significant semantic
consequences. It allows us to prove the validity of entire sets of formulae via
formula templates. It is also an essential tool for manipulating formulae
throughout the text.

A substitution σ is a mapping from formulae to formulae:

σ : {F1 7→ G1, . . . , Fn 7→ Gn} .

The domain of σ, domain(σ), is

domain(σ) : {F1, . . . , Fn} ,

while the range range(σ) is

range(σ) : {G1, . . . , Gn} .

The application of a substitution σ to a formula F , Fσ, replaces each occur-
rence of a formula Fi in the domain of σ with its corresponding formula Gi in
the range of σ. Replacements occur all at once. We remove any ambiguity by
establishing that when both subformulae Fj and Fk are in the domain of σ,
and Fk is a strict subformula of Fj , then the larger subformula Fj is replaced
by the corresponding formula Gj . An example clarifies this statement.

1.5 Substitution 17

Example 1.14. Consider formula

F : P ∧Q → P ∨ ¬Q

and substitution

σ : {P 7→ R, P ∧Q 7→ P → Q} .

Then

Fσ : (P → Q) → R ∨ ¬Q ,

where the antecedent P ∧ Q of F is replaced by P → Q, and the P of the
consequent is replaced by R. Moreover,

Fσ 6= R ∧Q → R ∨ ¬Q

by our convention. �

A variable substitution is a substitution in which the domain consists
only of propositional variables.

One notation is useful when working with substitutions. When we write
F [F1, . . . , Fn], we mean that formula F can have formulae Fi, i = 1, . . . , n, as
subformulae. If σ is {F1 7→ G1, . . . , Fn 7→ Gn}, then

F [F1, . . . , Fn]σ : F [G1, . . . , Gn] .

In the formula of Example 1.14, writing

F [P, P ∧Q]σ : F [R, P → Q]

emphasizes that subformulae P and P ∧ Q of F are replaced by formulae R
and P → Q, respectively.

Two interesting semantic consequences can be derived from substitution.
Proposition 1.15 states that substituting subformulae Fi of F with correspond-
ing equivalent subformulae Gi results in an equivalent formula F ′.

Proposition 1.15 (Substitution of Equivalent Formulae). Consider
substitution

σ : {F1 7→ G1, . . . , Fn 7→ Gn}

such that for each i, Fi ⇔ Gi. Then F ⇔ Fσ.

Example 1.16. Consider applying substitution

σ : {P → Q 7→ ¬P ∨Q}

to

18 1 Propositional Logic

F : (P → Q) → R .

Since P → Q ⇔ ¬P ∨Q, the formula

Fσ : (¬P ∨Q) → R

is equivalent to F . �

Proposition 1.17 asserts that proving the validity of a PL formula F actu-
ally proves the validity of an infinite set of formulae: those formulae that can
be derived from F via variable substitutions.

Proposition 1.17 (Valid Template). If F is valid and G = Fσ for some
variable substitution σ, then G is valid.

Example 1.18. In Example 1.12, we proved that P → Q is equivalent to
¬P ∨Q:

F : (P → Q) ↔ (¬P ∨Q)

is valid. The validity of F implies that every formula of the form F1 → F2 is
equivalent to ¬F1 ∨ F2, for arbitrary subformulae F1 and F2. �

Finally, it is often useful to compute the composition of substitutions.
Given substitutions σ1 and σ2, the idea is to compute substitution σ such that
Fσ1σ2 = Fσ for any F . Compute σ1σ2 as follows:

1. apply σ2 to each formula of the range of σ1, and add the results to σ;
2. if Fi of Fi 7→ Gi appears in the domain of σ2 but not in the domain of

σ1, then add Fi 7→ Gi to σ.

Example 1.19. Compute the composition of substitutions

σ1σ2 : {P 7→ R, P ∧Q 7→ P → Q}{P 7→ S, S 7→ Q}

as follows:

{P 7→ Rσ2, P ∧Q 7→ (P → Q)σ2, S 7→ Q}
= {P 7→ R, P ∧Q 7→ S → Q, S 7→ Q}

�

1.6 Normal Forms

A normal form of formulae is a syntactic restriction such that for every
formula of the logic, there is an equivalent formula in the normal form. Three
normal forms are particularly important for PL.

1.6 Normal Forms 19

Negation normal form (NNF) requires that ¬, ∧, and ∨ be the only
connectives and that negations appear only in literals. Transforming a formula
F to equivalent formula F ′ in NNF can be computed recursively using the
following list of template equivalences:

¬¬F1 ⇔ F1

¬⊤ ⇔ ⊥
¬⊥ ⇔ ⊤

¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

When implementing the transformation, the equivalences should be applied
left-to-right. The equivalences

¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2 ¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

are known as De Morgan’s Law.
Propositions 1.15 and 1.17 justify that the result of applying the template

equivalences to a formula produces an equivalent formula. The transitivity of
equivalence justifies that this equivalence holds over any number of transfor-
mations: if F ⇔ G and G⇔ H , then F ⇔ H .

Example 1.20. To convert the formula

F : ¬(P → ¬(P ∧Q))

into NNF, apply the template equivalence

F1 → F2 ⇔ ¬F1 ∨ F2 (1.1)

to produce

F ′ : ¬(¬P ∨ ¬(P ∧Q)) .

Let us understand this “application” of the template equivalence in detail.
First, apply variable substitution

σ1 : {F1 7→ P, F2 7→ ¬(P ∧Q)}

to the valid template formula of equivalence (1.1):

(F1 → F2 ↔ ¬F1 ∨ F2)σ1 : P → ¬(P ∧Q) ↔ ¬P ∨ ¬(P ∧Q) .

Proposition 1.17 implies that the result is valid. Then construct substitution

σ2 : {P → ¬(P ∧Q) 7→ ¬P ∨ ¬(P ∧Q)} ,

20 1 Propositional Logic

and apply Proposition 1.15 to Fσ2 to yield that

F ′ : ¬(¬P ∨ ¬(P ∧Q))

is equivalent to F . Subsequently, we shall not provide these details.
Continuing with the conversion to NNF, apply De Morgan’s law

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

to produce

F ′′ : ¬¬P ∧ ¬¬(P ∧Q) .

Apply

¬¬F1 ⇔ F1

twice to produce

F ′′′ : P ∧ P ∧Q ,

which is in NNF and equivalent to F . �

A formula is in disjunctive normal form (DNF) if it is a disjunction
of conjunctions of literals:
∨

i

∧

j

ℓi,j for literals ℓi,j .

To convert a formula F into an equivalent formula in DNF, transform F into
NNF and then use the following table of template equivalences:

(F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)
F1 ∧ (F2 ∨ F3) ⇔ (F1 ∧ F2) ∨ (F1 ∧ F3)

Again, when implementing the transformation, the equivalences should be
applied left-to-right. The equivalences simply say that conjunction distributes
over disjunction.

Example 1.21. To convert

F : (Q1 ∨ ¬¬Q2) ∧ (¬R1 → R2)

into DNF, first transform it into NNF

F ′ : (Q1 ∨Q2) ∧ (R1 ∨R2) ,

and then apply distributivity to obtain

F ′′ : (Q1 ∧ (R1 ∨R2)) ∨ (Q2 ∧ (R1 ∨R2)) ,

and then distributivity twice again to produce

F ′′′ : (Q1 ∧R1) ∨ (Q1 ∧R2) ∨ (Q2 ∧R1) ∨ (Q2 ∧R2) .

F ′′′ is in DNF and is equivalent to F . �

1.7 Decision Procedures for Satisfiability 21

The dual of DNF is conjunctive normal form (CNF). A formula in
CNF is a conjunction of disjunctions of literals:

∧

i

∨

j

ℓi,j for literals ℓi,j .

Each inner block of disjunctions is called a clause. To convert a formula F
into an equivalent formula in CNF, transform F into NNF and then use the
following table of template equivalences:

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)
F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)

Example 1.22. To convert

F : (Q1 ∧ ¬¬Q2) ∨ (¬R1 → R2)

into CNF, first transform F into NNF:

F ′ : (Q1 ∧Q2) ∨ (R1 ∨R2) .

Then apply distributivity to obtain

F ′′ : (Q1 ∨R1 ∨R2) ∧ (Q2 ∨R1 ∨R2) ,

which is in CNF and equivalent to F . �

1.7 Decision Procedures for Satisfiability

Section 1.3 introduced the truth-table and semantic argument methods for
determining the satisfiability of PL formulae. In this section, we study al-
gorithms for deciding satisfiability (see Section 2.6 for a formal discussion of
decidability). A decision procedure for satisfiability of PL formulae reports,
after some finite amount of computation, whether a given PL formula F is
satisfiable.

1.7.1 Simple Decision Procedures

The truth-table method immediately suggests a decision procedure: construct
the full table, which has 2n rows when F has n variables, and report whether
the final column, representing F , has value 1 in any row.

The semantic argument method also suggests a decision procedure. The
basic idea is to make sure that a proof rule is only applied to each line in
the argument at most once. Because each deduction is simpler in construction
than its premise, the constructed proof is of finite size (see Chapter 4 for

22 1 Propositional Logic

a formal approach to proving this point). When the semantic argument is
finished, report whether any branch is still open.

This simple description leaves out many details. Most importantly, when
many lines exist to which one can apply proof rules, which line should be con-
sidered next? Different implementations of this decision, called proof tactics,
result in different proof shapes and sizes. For example, one basic tactic is to
apply proof rules with only one deduction before proof rules with multiple
deductions to delay forks in the proof as long as possible.

Subsequent sections consider more sophisticated procedures that are the
basis for modern satisfiability solvers.

1.7.2 Reconsidering the Truth-Table Method

In the naive decision procedure based on the truth-table method, the entire
table is constructed. Actually, only one row need be considered at a time, mak-
ing for a space efficient procedure. This idea is implemented in the following
recursive algorithm for deciding the satisfiability of a PL formula F :

let rec sat F =
if F = ⊤ then true

else if F = ⊥ then false

else

let P = choose vars(F) in
(sat F{P 7→ ⊤}) ∨ (sat F{P 7→ ⊥})

The notation “let rec sat F =” declares sat as a recursive function that
takes one argument, a formula F . The notation “let P = choose vars(F) in”
means that P ’s value in the subsequent text is the variable returned by the
choose function. When applying the substitutions F{P 7→ ⊤} or F{P 7→ ⊥},
the template equivalences of Exercise 1.2 should be applied to simplify the
result. Then the comparisons F = ⊤ and F = ⊥ can be implemented as
purely syntactic operations.

At each recursive step, if F is not yet ⊤ or ⊥, a variable is chosen on which
to branch. Each possibility for P is attempted if necessary. This algorithm
returns true immediately upon finding a satisfying interpretation. Otherwise,
if F is unsatisfiable, it eventually returns⊥. sat may save branching on certain
variables by simplifying intermediate formulae.

Example 1.23. Consider the formula

F : (P → Q) ∧ P ∧ ¬Q .

To compute sat F , choose a variable, say P , and recurse on the first case,

F{P 7→ ⊤} : (⊤ → Q) ∧⊤ ∧ ¬Q ,

which simplifies to

1.7 Decision Procedures for Satisfiability 23

F

F1 : Q ∧ ¬Q ⊥

⊥ ⊥

P 7→ ⊤ P 7→ ⊥

Q 7→ ⊤ Q 7→ ⊥

F

⊥ ⊤

P 7→ ⊤ P 7→ ⊥

(a) (b)

Fig. 1.1. Visualizing runs of sat

F1 : Q ∧ ¬Q .

Now try each of

F1{Q 7→ ⊤} and F1{Q 7→ ⊥} .

Both simplify to ⊥, so this branch ends without finding a satisfying interpre-
tation.

Now try the other branch for P in F :

F{P 7→ ⊥} : (⊥ → Q) ∧⊥ ∧ ¬Q ,

which simplifies to ⊥. Thus, this branch also ends without finding a satisfying
interpretation. Thus, F is unsatisfiable.

The run of sat on F is visualized in Figure 1.1(a). �

Example 1.24. Consider the formula

F : (P → Q) ∧ ¬P .

To compute sat F , choose a variable, say P , and recurse on the first case,

F{P 7→ ⊤} : (⊤ → Q) ∧ ¬⊤ ,

which simplifies to ⊥. Therefore, try

F{P 7→ ⊥} : (⊥ → Q) ∧ ¬⊥

instead, which simplifies to ⊤. Arbitrarily assigning a value to Q produces the
following satisfying interpretation:

I : {P 7→ false, Q 7→ true} .

The run of sat on F is visualized in Figure 1.1(b). �

24 1 Propositional Logic

→ Rep(F)

Rep(P ∨ Q) ∨ ¬ Rep(¬(P ∧ ¬R))

P Q ∧ Rep(P ∧ ¬R)

P ¬ Rep(¬R)

R

Fig. 1.2. Parse tree of F : P∨Q → ¬(P∧¬R) with representatives for subformulae

1.7.3 Conversion to an Equisatisfiable Formula in CNF

The next two decision procedures operate on PL formulae in CNF. The trans-
formation suggested in Section 1.6 produces an equivalent formula that can be
exponentially larger than the original formula: consider converting a formula
in DNF into CNF. However, to decide the satisfiability of F , we need only
examine a formula F ′ such that F and F ′ are equisatisfiable. F and F ′ are
equisatisfiable when F is satisfiable iff F ′ is satisfiable.

We define a method for converting PL formula F to equisatisfiable PL
formula F ′ in CNF that is at most a constant factor larger than F . The main
idea is to introduce new propositional variables to represent the subformulae
of F . The constructed formula F ′ includes extra clauses that assert that these
new variables are equivalent to the subformulae that they represent.

Figure 1.2 visualizes the idea of the procedure. Each node of the “parse
tree” of F represents a subformula G of F . With each node G is associated a
representative propositional variable Rep(G). In the constructed formula F ′,
each representative Rep(G) is asserted to be equivalent to the subformula G
that it represents in such a way that the conjunction of all such assertions is
in CNF. Finally, the representative Rep(F) of F is asserted to be true.

To obtain a small formula in CNF, each assertion of equivalence between
Rep(G) and G refers at most to the children of G in the parse tree. How is this
possible when a subformula may be arbitrarily large? The main trick is to refer
to the representatives of G’s children rather than the children themselves.

Let the “representative” function Rep : PL→ V∪{⊤,⊥}map PL formulae
to propositional variables V , ⊤, or ⊥. In the general case, it is intended to
map a formula F to its representative propositional variable PF such that the
truth value of PF is the same as that of F . In other words, PF provides a
compact way of referring to F .

Let the “encoding” function En : PL→ PL map PL formulae to PL formu-
lae. En is intended to map a PL formula F to a PL formula F ′ in CNF that
asserts that F ’s representative, PF , is equivalent to F : “Rep(F)↔ F”.

1.7 Decision Procedures for Satisfiability 25

As the base cases for defining Rep and En, define their behavior on ⊤, ⊥,
and propositional variables P :

Rep(⊤) = ⊤ En(⊤) = ⊤
Rep(⊥) = ⊥ En(⊥) = ⊤
Rep(P) = P En(P) = ⊤

The representative of ⊤ is ⊤ itself, and the representative of ⊥ is ⊥ itself.
Thus, Rep(⊤) ↔ ⊤ and Rep(⊥) ↔ ⊥ are both trivially valid, so En(⊤) and
En(⊥) are both ⊤. Finally, the representative of a propositional variable P is
P itself; and again, Rep(P)↔ P is trivially valid so that En(P) is ⊤.

For the inductive case, F is a formula other than an atom, so define its
representative as a unique propositional variable PF :

Rep(F) = PF .

En then asserts the equivalence of F and PF as a CNF formula. On conjunc-
tion, define

En(F1 ∧ F2) =
let P = Rep(F1 ∧ F2) in
(¬P ∨ Rep(F1)) ∧ (¬P ∨ Rep(F2)) ∧ (¬Rep(F1) ∨ ¬Rep(F2) ∨ P)

The returned formula

(¬P ∨ Rep(F1)) ∧ (¬P ∨ Rep(F2)) ∧ (¬Rep(F1) ∨ ¬Rep(F2) ∨ P)

is in CNF and is equivalent to

Rep(F1 ∧ F2) ↔ Rep(F1) ∧ Rep(F2) .

In detail, the first two clauses

(¬P ∨ Rep(F1)) ∧ (¬P ∨ Rep(F2))

together assert

P → Rep(F1) ∧ Rep(F2)

(since, for example, ¬P ∨ Rep(F1) is equivalent to P → Rep(F1)), while the
final clause asserts

Rep(F1) ∧ Rep(F2) → P .

Notice the application of Rep to F1 and F2. As mentioned above, it is the
trick to producing a small CNF formula.

On negation, En(¬F) returns a formula equivalent to Rep(¬F) ↔ ¬Rep(F):

En(¬F) =
let P = Rep(¬F) in
(¬P ∨ ¬Rep(F)) ∧ (P ∨ Rep(F))

26 1 Propositional Logic

En is defined for ∨, →, and ↔ as well:

En(F1 ∨ F2) =
let P = Rep(F1 ∨ F2) in
(¬P ∨ Rep(F1) ∨ Rep(F2)) ∧ (¬Rep(F1) ∨ P) ∧ (¬Rep(F2) ∨ P)

En(F1 → F2) =
let P = Rep(F1 → F2) in
(¬P ∨ ¬Rep(F1) ∨ Rep(F2)) ∧ (Rep(F1) ∨ P) ∧ (¬Rep(F2) ∨ P)

En(F1 ↔ F2) =
let P = Rep(F1 ↔ F2) in
(¬P ∨ ¬Rep(F1) ∨ Rep(F2)) ∧ (¬P ∨ Rep(F1) ∨ ¬Rep(F2))
∧ (P ∨ ¬Rep(F1) ∨ ¬Rep(F2)) ∧ (P ∨ Rep(F1) ∨ Rep(F2))

Having defined En, let us construct the full CNF formula that is equisat-
isfiable to F . If SF is the set of all subformulae of F (including F itself),
then

F ′ : Rep(F) ∧
∧

G∈SF

En(G)

is in CNF and is equisatisfiable to F . The second main conjunct asserts the
equivalences between all subformulae of F and their corresponding represen-
tatives. Rep(F) asserts that F ’s representative, and thus F itself (according
to the second conjunct), is true.

If F has size n, where each instance of a logical connective or a proposi-
tional variable contributes one unit of size, then F ′ has size at most 30n + 2.
The size of F ′ is thus linear in the size of F . The number of symbols in the
formula returned by En(F1 ↔ F2), which incurs the largest expansion, is 29.
Up to one additional conjunction is also required per symbol of F . Finally,
two extra symbols are required for asserting that Rep(F) is true.

Example 1.25. Consider formula

F : (Q1 ∧Q2) ∨ (R1 ∧R2) ,

which is in DNF. To convert it to CNF, we collect its subformulae

SF : {Q1, Q2, Q1 ∧Q2, R1, R2, R1 ∧R2, F}

and compute

En(Q1) = ⊤
En(Q2) = ⊤

En(Q1 ∧Q2) = (¬P(Q1∧Q2) ∨Q1) ∧ (¬P(Q1∧Q2) ∨Q2)
∧ (¬Q1 ∨ ¬Q2 ∨ P(Q1∧Q2))

1.7 Decision Procedures for Satisfiability 27

En(R1) = ⊤
En(R2) = ⊤

En(R1 ∧R2) = (¬P(R1∧R2) ∨R1) ∧ (¬P(R1∧R2) ∨R2)
∧ (¬R1 ∨ ¬R2 ∨ P(R1∧R2))

En(F) = (¬P(F) ∨ P(Q1∧Q2) ∨ P(R1∧R2))
∧ (¬P(Q1∧Q2) ∨ P(F))
∧ (¬P(R1∧R2) ∨ P(F))

Then

F ′ : P(F) ∧
∧

G∈SF

En(G)

is equisatisfiable to F and is in CNF. �

1.7.4 The Resolution Procedure

The next decision procedure that we consider is based on resolution and
applies only to PL formulae in CNF. Therefore, the procedure of Section
1.7.3 must first be applied to the given PL formula if it is not already in CNF.

Resolution follows from the following observation of any PL formula F in
CNF: to satisfy clauses C1[P] and C2[¬P] that share variable P but disagree
on its value, either the rest of C1 or the rest of C2 must be satisfied. Why? If
P is true, then a literal other than ¬P in C2 must be satisfied; while if P is
false, then a literal other than P in C1 must be satisfied. Therefore, the clause
C1[⊥] ∨ C2[⊥], simplified according to the template equivalences of Exercise
1.2, can be added as a conjunction to F to produce an equivalent formula still
in CNF.

Clausal resolution is stated as the following proof rule:

C1[P] C2[¬P]
C1[⊥] ∨C2[⊥]

From the two clauses of the premise, deduce the new clause, called the resol-
vent.

If ever ⊥ is deduced via resolution, F must be unsatisfiable since F ∧⊥ is
unsatisfiable. Otherwise, if every possible resolution produces a clause that is
already known, then F must be satisfiable.

Example 1.26. The CNF of (P → Q) ∧ P ∧ ¬Q is the following:

F : (¬P ∨Q) ∧ P ∧ ¬Q .

From resolution

(¬P ∨Q) P
Q

,

28 1 Propositional Logic

construct

F1 : (¬P ∨Q) ∧ P ∧ ¬Q ∧ Q .

From resolution

¬Q Q
⊥ ,

deduce that F , and thus the original formula, is unsatisfiable. �

Example 1.27. Consider the formula

F : (¬P ∨Q) ∧ ¬Q .

The one possible resolution

(¬P ∨Q) ¬Q
¬P

yields

F1 : (¬P ∨Q) ∧ ¬Q ∧ ¬P .

Since no further resolutions are possible, F is satisfiable. Indeed,

I : {P 7→ false, Q 7→ false}

is a satisfying interpretation. A CNF formula that does not contain the clause
⊥ and to which no more resolutions can be applied represents all possible
satisfying interpretations. �

1.7.5 DPLL

Modern satisfiability procedures for propositional logic are based on the Davis-
Putnam-Logemann-Loveland algorithm (DPLL), which combines the space-
efficient procedure of Section 1.7.2 with a restricted form of resolution. We
review in this section the basic algorithm. Much research in the past decade
has advanced the state-of-the-art considerably.

Like the resolution procedure, DPLL operates on PL formulae in CNF.
But again, as the procedure decides satisfiability, we can apply the conversion
procedure of Section 1.7.3 to produce a small equisatisfiable CNF formula.

As in the procedure sat, DPLL attempts to construct an interpretation of
F ; failing to do so, it reports that the given formula is unsatisfiable. Rather
than relying solely on enumerating possibilities, however, DPLL applies a
restricted form of resolution to gain some deductive power. The process of
applying this restricted resolution as much as possible is called Boolean con-
straint propagation (BCP).

1.7 Decision Procedures for Satisfiability 29

BCP is based on unit resolution. Unit resolution operates on two clauses.
One clause, called the unit clause, consists of a single literal ℓ (ℓ = P or
ℓ = ¬P for some propositional variable P). The second clause contains the
negation of ℓ: C[¬ℓ]. Then unit resolution is the deduction

ℓ C[¬ℓ]
C[⊥]

.

Unlike with full resolution, the literals of the resolvent are a subset of the
literals of the second clause. Hence, the resolvent replaces the second clause.

Example 1.28. In the formula

F : (P) ∧ (¬P ∨Q) ∧ (R ∨ ¬Q ∨ S) ,

(P) is a unit clause. Therefore, applying unit resolution

P (¬P ∨Q)
Q

produces

F ′ : (Q) ∧ (R ∨ ¬Q ∨ S) .

Applying unit resolution again

Q R ∨ ¬Q ∨ S
R ∨ S

produces

F ′′ : (R ∨ S) ,

ending this round of BCP. �

The implementation of DPLL is structurally similar to sat, except that it
begins by applying BCP:

let rec dpll F =
let F ′ = bcp F in

if F ′ = ⊤ then true

else if F ′ = ⊥ then false

else

let P = choose vars(F ′) in
(dpll F ′{P 7→ ⊤}) ∨ (dpll F ′{P 7→ ⊥})

As in sat, intermediate formulae are simplified according to the template
equivalences of Exercise 1.2.

30 1 Propositional Logic

F

(R) ∧ (¬R) ∧ (P ∨ ¬R) (¬P ∨ R)

¬P

⊥ I : {P 7→ false, Q 7→ false, R 7→ true}

Q 7→ ⊤

R (¬R)

⊥

Q 7→ ⊥

R 7→ ⊤

P 7→ ⊥

Fig. 1.3. Visualization of Example 1.30

One easy optimization is the following: if variable P appears only positively
or only negatively in F , it should not be chosen by choose vars(F ′). P appears
only positively when every P -literal is just P ; P appears only negatively when
every P -literal is ¬P . In both cases, F is equisatisfiable to the formula F ′

constructed by removing all clauses containing an instance of P . Therefore,
these clauses do not contribute to BCP. When only such variables remain,
the formula must be satisfiable: a full interpretation can be constructed by
setting each variable’s value based on whether it appears only positively (true)
or only negatively (false).

The values to which propositional variables are set on the path to a solution
can be recorded so that DPLL can return a satisfying interpretation if one
exists, rather than just true.

Example 1.29. Consider the formula

F : (P) ∧ (¬P ∨Q) ∧ (R ∨ ¬Q ∨ S) .

On the first level of recursion, dpll recognizes the unit clause (P) and applies
the BCP steps from Example 1.28, resulting in the formula

F ′′ : R ∨ S .

The unit resolutions correspond to the partial interpretation

{P 7→ true, Q 7→ true} .

Only positively occurring variables remain, so F is satisfiable. In particular,

{P 7→ true, Q 7→ true, R 7→ true, S 7→ true}

is a satisfying interpretation of F .
Branching was not required in this example. �

Example 1.30. Consider the formula

F : (¬P ∨Q ∨R) ∧ (¬Q ∨R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R) .

1.8 Summary 31

On the first level of recursion, dpll must branch. Branching on Q or R will
result in unit clauses; choose Q.

Then

F{Q 7→ ⊤} : (R) ∧ (¬R) ∧ (P ∨ ¬R) .

The unit resolution

R (¬R)
⊥

finishes this branch.
On the other branch,

F{Q 7→ ⊥} : (¬P ∨R) .

P appears only negatively, and R appears only positively, so the formula is
satisfiable. In particular, F is satisfied by interpretation

I : {P 7→ false, Q 7→ false, R 7→ true} .

This run of dpll is visualized in Figure 1.3. �

1.8 Summary

This chapter introduces propositional logic (PL). It covers:

• Its syntax. How one constructs a PL formula. Propositional variables,
atoms, literals, logical connectives.

• Its semantics. What a PL formula means. Truth values true and false.
Interpretations. Truth-table definition, inductive definition.

• Satisfiability and validity. Whether a PL formula evaluates to true under
any or all interpretations. Duality of satisfiability and validity, truth-table
method, semantic argument method.

• Equivalence and implication. Whether two formulae always evaluate to the
same truth value under every interpretation. Whether under any interpre-
tation, if one formula evaluates to true, the other also evaluates to true.
Reduction to validity.

• Substitution, which is a tool for manipulating formulae and making general
claims. Substitution of equivalent formulae. Valid templates.

• Normal forms. A normal form is a set of syntactically restricted formulae
such that every PL formula is equivalent to some member of the set.

• Decision procedures for satisfiability. Truth-table method, sat, resolution
procedure, dpll. Transformation to equisatisfiable CNF formula.

32 1 Propositional Logic

PL is an important logic with applications in software and hardware de-
sign and analysis, knowledge representation, combinatorial optimization, and
complexity theory, to name a few. Although relatively simple, the Boolean
structure that is central to PL is often a main source of complexity in appli-
cations of the algorithmic reasoning that is the focus of Part II. Exercise 8.1
explores this point in more depth.

Besides being an important logic in its own right, PL serves to introduce
the main concepts that are important throughout the book, in particular
syntax, semantics, and satisfiability and validity. Chapter 2 presents first-
order logic by building on the concepts of this chapter.

Bibliographic Remarks

For a complete and concise presentation of propositional logic, see Smullyan’s
text First-Order Logic [87]. The semantic argument method is similar to
Smullyan’s tableau method.

The DPLL algorithm is based on work by Davis and Putnam, presented
in [26], and by Davis, Logemann, and Loveland, presented in [25].

Exercises

1.1 (PL validity & satisfiability). For each of the following PL formulae,
identify whether it is valid or not. If it is valid, prove it with a truth table or
semantic argument; otherwise, identify a falsifying interpretation. Recall our
conventions for operator precedence and associativity from Section 1.1.

(a) P ∧Q → P → Q
(b) (P → Q) ∨ P ∧ ¬Q
(c) (P → Q → R) → P → R
(d) (P → Q ∨R) → P → R
(e) ¬(P ∧Q) → R → ¬R → Q
(f) P ∧Q ∨ ¬P ∨ (¬Q → ¬P)
(g) (P → Q → R) → ¬R → ¬Q → ¬P
(h) (¬R → ¬Q → ¬P) → P → Q → R

1.2 (Template equivalences). Use the truth table or semantic argument
method to prove the following template equivalences.

(a) ⊤ ⇔ ¬⊥
(b) ⊥ ⇔ ¬⊤
(c) ¬¬F ⇔ F
(d) F ∧⊤ ⇔ F
(e) F ∧⊥ ⇔ ⊥
(f) F ∧ F ⇔ F

Exercises 33

(g) F ∨⊤ ⇔ ⊤
(h) F ∨⊥ ⇔ F
(i) F ∨ F ⇔ F
(j) F → ⊤ ⇔ ⊤
(k) F → ⊥ ⇔ ¬F
(l) ⊤ → F ⇔ F

(m) ⊥ → F ⇔ ⊤
(n) ⊤ ↔ F ⇔ F
(o) ⊥ ↔ F ⇔ ¬F
(p) ¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

(q) ¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

(r) F1 → F2 ⇔ ¬F1 ∨ F2

(s) F1 → F2 ⇔ ¬F2 → ¬F1

(t) ¬(F1 → F2) ⇔ F1 ∧ ¬F2

(u) (F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)
(v) (F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)
(w) (F1 → F3) ∧ (F2 → F3) ⇔ F1 ∨ F2 → F3

(x) (F1 → F2) ∧ (F1 → F3) ⇔ F1 → F2 ∧ F3

(y) F1 → F2 → F3 ⇔ F1 ∧ F2 → F3

(z) (F1 ↔ F2) ∧ (F2 ↔ F3) ⇒ (F1 ↔ F3)

1.3 (Redundant logical connectives). Given ⊤, ∧, and ¬, prove that ⊥,
∨, →, and↔ are redundant logical connectives. That is, show that each of ⊥,
F1 ∨ F2, F1 → F2, and F1 ↔ F2 is equivalent to a formula that uses only F1,
F2, ⊤, ∨, and ¬.

1.4 (The nand connective). Let the logical connective ∧ (pronounced
“nand”) be defined according to the following truth table:

F1 F2 F1∧F2

0 0 1
0 1 1
1 0 1
1 1 0

Show that all standard logical connectives can be defined in terms of ∧.

1.5 (Normal forms). Convert the following PL formulae to NNF, DNF, and
CNF via the transformations of Section 1.6.

(a) ¬(P → Q)
(b) ¬(¬(P ∧Q) → ¬R)
(c) (Q ∧R → (P ∨ ¬Q)) ∧ (P ∨R)
(d) ¬(Q→ R) ∧ P ∧ (Q ∨ ¬(P ∧R))

34 1 Propositional Logic

1.6 (Graph coloring). A solution to a graph coloring problem is an as-
signment of colors to vertices such that no two adjacent vertices have the same
color. Formally, a finite graph G = 〈V, E〉 consists of vertices V = {v1, . . . , vn}
and edges E = {〈vi1 , wi1 〉, . . . , 〈vik

, wik
〉}. The finite set of colors is given by

C = {c1, . . . , cm}. A problem instance is given by a graph and a set of colors:
the problem is to assign each vertex v ∈ V a color(v) ∈ C such that for every
edge 〈v, w〉 ∈ E, color(v) 6= color(w). Clearly, not all instances have solutions.

Show how to encode an instance of a graph coloring problem into a PL
formula F . F should be satisfiable iff a graph coloring exists.

(a) Describe a set of constraints in PL asserting that every vertex is colored.
Since the sets of vertices, edges, and colors are all finite, use notation such
as “color(v) = c” to indicate that vertex v has color c. Realize that such
an assertion is encodeable as a single propositional variable P c

v .
(b) Describe a set of constraints in PL asserting that every vertex has at most

one color.
(c) Describe a set of constraints in PL asserting that no two connected vertices

have the same color.
(d) Identify a significant optimization in this encoding. Hint: Can any con-

straints be dropped? Why?
(e) If the constraints are not already in CNF, specify them in CNF now. For

N vertices, K edges, and M colors, how many variables does the optimized
encoding require? How many clauses?

1.7 (CNF). Example 1.25 constructs a CNF formula that is equisatisfiable
to a given small formula in DNF.

(a) If distribution of disjunction over conjunction (described in Section 1.6)
were used, how many clauses would the resulting formula have?

(b) Consider the formulae

Fn :
n∨

i=1

(Qi ∧Ri)

for positive integers n. As a function of n, how many clauses are in
(i) the formula F ′ constructed based on distribution of disjunction over

conjunction?
(ii) the formula

F ′ : Rep(Fn) ∧
∧

G∈SFn

En(G) ?

(iii) For which n is the distribution approach better?

1.8 (DPLL). Describe the execution of DPLL on the following formulae.

(a) (P ∨ ¬Q ∨ ¬R) ∧ (Q ∨ ¬P ∨R) ∧ (R ∨ ¬Q)
(b) (P ∨Q ∨R) ∧ (¬P ∨ ¬Q ∨ ¬R) ∧ (¬P ∨Q ∨R) ∧ (¬Q ∨R) ∧ (Q ∨ ¬R)

http://www.springer.com/978-3-540-74112-1

