Contents

Contributors .. XV

1 Cattle
M. D. MacNeil, J. M. Reecy, D. J. Garrick ... 1
1.1 Introduction ... 1
 1.1.1 History ... 1
 1.1.2 Economic Importance .. 1
1.2 Molecular Genetics ... 3
 1.2.1 Genetic-Mapping Resources .. 3
 1.2.2 Quantitative Trait Loci ... 5
 1.2.3 Using Genotypes in Breeding Cattle .. 8
1.3 Future Scope of Work ... 9
References ... 10

2 Water Buffalo
L. Iannuzzi and G. P. Di Meo ... 19
2.1 Introduction .. 19
 2.1.1 Taxonomic Description ... 19
 2.1.2 Economic Importance .. 21
 2.1.3 Breeding Objectives ... 22
2.2 Molecular Genetics ... 23
 2.2.1 Classical Mapping Efforts .. 23
 2.2.2 Construction of Genetic Maps and Comparative Mapping 24
2.3 Future Scope of Work .. 28
References ... 28

3 Sheep
C. A. Bidwell, N. E. Cockett, J. F. Maddox and J. E. Beever 33
3.1 Introduction .. 33
 3.1.1 Economic and Biomedical Importance ... 33
 3.1.2 History .. 34
 3.1.3 The Sheep Karyotype .. 34
3.2 Molecular Genetics ... 35
 3.2.1 Linkage Maps ... 36
 3.2.2 Mapped Traits in Sheep .. 36
 3.2.3 Resources for Mapping and Sequencing the Ovine Genome 39
3.3 Future Scope of Work .. 41
References ... 41

4 Deer
Richard J. Hall ... 47
4.1 Introduction .. 47
 4.1.1 Taxonomic Description .. 47
 4.1.2 Economic Importance ... 48
 4.1.3 Karotype of Cervids. ... 48
5 Poultry
Michael N. Romanov Alexei A. Sazanov, Irina Moiseyeva, and Aleksandr F. Smirnov

5.1 Introduction

5.1.1 Brief History and Zoological Description

5.1.2 Chickens

5.1.3 Economic Importance and Nutritional Value

5.1.4 Breeding Objectives

5.2 Classic Genetics

5.2.1 Brief History of Poultry Genetics

5.2.2 Early Classical Mapping Efforts

5.2.3 First Chicken Map

5.2.4 Subsequent Classical Mapping

5.3 Molecular Genetics and Whole-Genome Sequence

5.3.1 First-generation Molecular Maps

5.3.2 Physical Maps

5.3.3 Whole-Genome Sequence

5.3.4 Chicken Genome and Sequence Features

5.3.5 Genetics and Molecular Mapping in Other Birds

5.4 QTL and Functional Genomics

5.4.1 QTL Analysis

5.4.2 QTL: Growth, Meat Quality, and Productivity

5.4.3 QTL: Egg Quality and Productivity

5.4.4 QTL: Disease Resistance

5.4.5 QTL: Behavior

5.4.6 Toward Functional Genomics of Poultry

5.5 Other Molecular Applications

5.5.1 Biodiversity Studies

5.5.2 Molecular Sexing

5.6 Conclusions

References

6 Turkey
Kent M. Reed

6.1 Introduction

6.1.1 Origin and Domestication

6.1.2 Taxonomy and Zoological Description

6.1.3 Modern Breeding Objectives

6.1.4 Economic Importance

6.1.5 Karyotype and Genome

6.1.6 Classical Mapping Efforts and Limitations
6.2 Construction of Genetic Maps .. 148
 6.2.1 Genetic Markers ... 148
 6.2.2 Primary Genetic Linkage Maps 151
 6.2.3 Second-generation Linkage Map 151
 6.2.4 Integrative Mapping ... 153
 6.2.5 Comparative Mapping ... 154
 6.2.6 Other Comparative Studies 155
 6.2.7 Physical Mapping .. 157
 6.2.8 The Next-Generation Physical Maps 157
6.3 Advanced Works, Functional Genomics 158
 6.3.1 ESTs, Microarrays, and SAGE 158
 6.3.2 Candidate Gene Mapping 159
6.4 Conclusion .. 160
References ... 160

7 Rabbit
Claire Rogel-Gaillard, Nuno Ferrand, and Helene Hayes 165
7.1 Introduction .. 165
 7.1.1 History ... 165
 7.1.2 Taxonomic Position ... 165
 7.1.3 Physical Characteristics 166
 7.1.4 Breeds ... 166
 7.1.5 Domestication, Phylogeny, and Genetic
 Diversity .. 167
 7.1.6 Economic Importance ... 171
7.2 Molecular Genetics ... 175
 7.2.1 Cytogenetics .. 175
 7.2.2 Genetic Molecular Markers 176
 7.2.3 Physical Mapping Tools 204
 7.2.4 Sequencing Data ... 204
 7.2.5 Bioinformatics Tools .. 205
 7.2.6 Expected Tools and Development 206
 7.2.7 Genome Mapping .. 206
7.3 Future Scope of Work .. 220
 7.3.1 Using Rabbits to Study the Domestication Process 220
 7.3.2 Using Rabbits to Study Color Patterns 220
 7.3.3 Using Rabbits to Study Early Embryonic Development . 220
 7.3.4 Using Rabbits to Produce Embryonic Stem Cells
 and Validate Candidate Genes 221
 7.3.5 Perspectives of the Rabbit as a Farm Animal 221
References ... 223

8 Dog
D.S. Mosher, T.C. Spady, and E.A. Ostrander 231
8.1 Introduction .. 231
 8.1.1 Dog Breeds .. 231
 8.1.2 Genetic Diversity and Dog Breeds 233
 8.1.3 The Superfamily Canoidae 234
 8.1.4 Mitochondrial DNA (MtDNA) Analysis of Canids 234
 8.1.5 The Domestic Dog Population 236
Genome Mapping and Genomics in Domestic Animals
Cockett, N.E.; Kole, C. (Eds.)
2009, XVI, 280 p. 49 illus., 12 illus. in color., Hardcover
ISBN: 978-3-540-73834-3