Contents

1 Introduction ... 1

Part I Fundamentals

2 Optimization Problems .. 7
 2.1 Solution Process .. 8
 2.1.1 Recognizing Problems ... 9
 2.1.2 Defining Problems .. 9
 2.1.3 Constructing Models ... 10
 2.1.4 Solving Models .. 11
 2.1.5 Validating Solutions ... 12
 2.1.6 Implementing Solutions 13
 2.2 Problem Instances ... 13
 2.3 Search Spaces ... 15
 2.3.1 Metrics ... 16
 2.3.2 Neighborhoods ... 18
 2.3.3 Fitness Landscapes .. 21
 2.3.4 Optimal Solutions ... 21
 2.4 Properties of Optimization Problems 22
 2.4.1 Problem Difficulty .. 23
 2.4.2 Locality ... 30
 2.4.3 Decomposability ... 36

3 Optimization Methods .. 45
 3.1 Analytical and Numerical Optimization Methods 46
 3.2 Optimization Methods for Linear, Continuous Problems 50
 3.2.1 Linear Optimization Problems 51
 3.2.2 Simplex Method ... 52
 3.2.3 Simplex and Interior Point Methods 56
 3.3 Optimization Methods for Linear, Discrete Problems 58
 3.3.1 Integer Linear Problems 58
3.3.2 Uninformed and Informed Search 61
3.3.3 Branch and Bound Methods 68
3.3.4 Dynamic Programming 73
3.3.5 Cutting Plane Methods 78

3.4 Heuristic Optimization Methods 82
 3.4.1 Heuristics .. 85
 3.4.2 Approximation Algorithms 88
 3.4.3 Modern Heuristics .. 91
 3.4.4 No-Free-Lunch Theorem 97

Part II Modern Heuristics

4 Design Elements ... 105
 4.1 Using Modern Heuristics 106
 4.2 Representation ... 108
 4.2.1 Genotypes and Phenotypes 108
 4.2.2 Genotype and Phenotype Space 110
 4.2.3 Benefits of Representations 111
 4.2.4 Standard Genotypes 111
 4.3 Search Operator .. 113
 4.3.1 General Design Guidelines 113
 4.3.2 Local Search Operators 115
 4.3.3 Recombination Operators 117
 4.3.4 Direct Representations 120
 4.3.5 Standard Search Operators 122
 4.4 Fitness Function .. 124
 4.5 Initialization ... 127

5 Search Strategies ... 131
 5.1 Local Search Methods 132
 5.1.1 Variable Neighborhood Search 134
 5.1.2 Guided Local Search 137
 5.1.3 Iterated Local Search 139
 5.1.4 Simulated Annealing and Tabu Search 140
 5.1.5 Evolution Strategy 142
 5.2 Recombination-Based Search Methods 145
 5.2.1 Genetic Algorithms 147
 5.2.2 Estimation of Distribution Algorithms 151
 5.2.3 Genetic Programming 153

6 Design Principles ... 157
 6.1 High Locality ... 158
 6.1.1 Search Operator .. 159
 6.1.2 Representation .. 161
 6.2 Biasing Modern Heuristics 164
 6.2.1 Incorporating Construction Heuristics in Representations .. 165