Contents

1 **The Enigma of Quantum Interference** 1
1.1 The Most Beautiful Experiment 1
1.2 Two-Slit Interference of Single Electron Wave Packets 3
1.3 Confined Fields and Electron Interference 11
1.4 ‘No-Slit’ Interference of Single Photons:
 Superposition, Probability, and Understanding 22
1.5 Macroscale Objects in Quantum Superpositions 27
1.6 Quantum Mechanics and Relativity:
 The ‘Wrong-Choice’ Experiment 38

2 **Correlations and Entanglements I:**
 Fluctuations of Light and Particles 45
2.1 Ghostly Correlations of Entangled States 45
2.2 A Dance of Correlated Fluctuations.
 The ‘Hanbury Brown Twiss’ 54
2.3 Measurable Distinctions Between Quantum Ensembles 60
2.4 Correlated Emission from Coherently Excited Atoms 65
2.5 The Quantum Optical Perspective 70
2.6 Coherence of Thermal Electrons 77
2.7 Comparison of Thermal Electrons and Thermal Radiation 86
2.8 Brighter Than a Million Suns:
 Electron Beams from Atom-Size Sources 88
2.9 Correlations and Coincidences: Experimental Possibilities .. 100
2A Consequences of Spectral Width on Photon Correlations 106
2B Chemical Potential at $T = 0 \text{ K}$ 107
2C Probability Density of a Sum of Random Variables 108
2D Correlated Fluctuations of Electrons at Two Detectors 109

3 **Correlations and Entanglements II:**
 Interferometry of Correlated Particles 111
3.1 Interferometry of Correlated Particles 111
3.2 The Aharonov–Bohm (AB) Effect with Entangled Electrons . . . 112
3.3 Hanbury Brown–Twiss Correlations of Entangled Electrons . . . 118
3.4 Correlated Particles in a Mach–Zender Interferometer 122

4 Quantum Boosts and Quantum Beats .. 135
4.1 Superposing Pathways in Time ... 135
4.2 Laser-Generated Quantum Beats .. 139
4.3 Nonlinear Effects in a Three-Level Atom 145
4.4 Quantum Beats in External Fields 155
4.5 Correlated Beats from Entangled States 159

5 Sympathetic Vibrations:
The Atom in Resonant Fields .. 165
5.1 Beams, Bottles, and Resonance ... 165
5.2 The Two-Level Atom Looked at Two Ways 174
5.3 Oscillating Field Theory ... 182
5.4 Resonance and Interference:
Tell-Tale Mark of a Quantum Jump ... 190
5.5 Quantum Interference in Separated Oscillating Fields 199
5.6 Ion Interferometry and Tests of Gauge Invariance 206
5A Oscillatory Field Solution
to the Two-State Schrödinger Equation 214
5B Generalized Rotating Field Theory and Optically-Induced
Ground State Coherence in a 3-State Atom 215

6 Symmetries and Insights:
The Circulating Electron in Electromagnetic Fields 219
6.1 Broken Symmetry of the Charged Planar Rotator 219
6.2 The Planar Rotator in an Electric Field 222
6.3 The Planar Rotator in a Magnetic Field 233
6.4 The Planar Rotator in a Vector Potential Field 239
6.5 Fermions, Bosons, and Things In-Between 246
6.6 Quantum Interference in a Metal Ring 250
6A Magnetic Hamiltonian of the Two-Dimensional Rotator 254

7 Chiral Asymmetry: The Quantum Physics of Handedness 257
7.1 Optical Activity of Mirror-Image Molecules 257
7.2 Quantum Interference and Parity Conservation 262
7.3 Optical Activity of Rotating Matter 272
7.4 ‘Electron Activity’ in a Chiral Medium 281
7.4.1 Longitudinal Polarization .. 285
7.4.2 Transverse Polarization ... 287
7.5 Chiral Light Reflection .. 290
7.6 Chirality in a Medium with Broken Symmetry 299
8 Condensates in the Cosmos:
Quantum Stabilization of Degenerate Stars 307
 8.1 Stellar End States ... 307
 8.2 Quantum Properties of a Self-Gravitating Condensate 311
 8.3 Quantum Properties of a Self-Gravitating System
 of Degenerate Fermions 314
 8.4 Fermion Condensation in a Degenerate Star 320
 8.5 Fermicon Stars vs Black Holes 333
 8.6 Can Ultra-Strong Magnetic Fields Prevent Collapse? 335
 8.7 Gravitationally-Induced Particle Resorption into the Vacuum . 340
 8A Gravitational Binding Energy of a Uniform Sphere of Matter... 346
 8B Stability in a Self-Gravitating System with Negative Pressure. 347
 8C Quark Deconfinement in a Neutron Star 349
 8D Energy Balance in the Creation of the Universe 353
 8E Particle Resorption in a Schwarzschild Geometry 355

References ... 361

Index .. 375
Quantum Superposition
Counterintuitive Consequences of Coherence, Entanglement, and Interference
Silverman, M.P.
2008, XII, 379 p., Hardcover
ISBN: 978-3-540-71883-3