Contents

1 History and Bibliography of Diffusion 1
 1.1 Pioneers and Landmarks of Diffusion 2
 References .. 16
 1.2 Bibliography of Solid-State Diffusion 18

Part I Fundamentals of Diffusion

2 Continuum Theory of Diffusion 27
 2.1 Fick’s Laws in Isotropic Media 27
 2.1.1 Fick’s First Law .. 28
 2.1.2 Equation of Continuity 29
 2.1.3 Fick’s Second Law – the ‘Diffusion Equation’ 30
 2.2 Diffusion Equation in Various Coordinates 31
 2.3 Fick’s Laws in Anisotropic Media 33
 References .. 35

3 Solutions of the Diffusion Equation 37
 3.1 Steady-State Diffusion .. 37
 3.2 Non-Steady-State Diffusion in one Dimension 39
 3.2.1 Thin-Film Solution 39
 3.2.2 Extended Initial Distribution and Constant Surface Concentration .. 41
 3.2.3 Method of Laplace Transformation 45
 3.2.4 Diffusion in a Plane Sheet – Separation of Variables 47
 3.2.5 Radial Diffusion in a Cylinder 50
 3.2.6 Radial Diffusion in a Sphere 51
 3.3 Point Source in one, two, and three Dimensions 52
 References .. 53

4 Random Walk Theory and Atomic Jump Process 55
 4.1 Random Walk and Diffusion 56
 4.1.1 A Simplified Model 56
 4.1.2 Einstein-Smoluchowski Relation 58
 4.1.3 Random Walk on a Lattice 60
4.1.4 Correlation Factor .. 62
4.2 Atomic Jump Process .. 64
References .. 66

5 Point Defects in Crystals 69
5.1 Pure Metals ... 70
5.1.1 Vacancies .. 70
5.1.2 Divacancies ... 72
5.1.3 Determination of Vacancy Properties 74
5.1.4 Self-Interstitials .. 79
5.2 Substitutional Binary Alloys 80
5.2.1 Vacancies in Dilute Alloys 81
5.2.2 Vacancies in Concentrated Alloys 82
5.3 Ionic Compounds .. 83
5.3.1 Frenkel Disorder .. 84
5.3.2 Schottky Disorder ... 85
5.4 Intermetallics .. 86
5.5 Semiconductors ... 88
References .. 91

6 Diffusion Mechanisms ... 95
6.1 Interstitial Mechanism 95
6.2 Collective Mechanisms 97
6.3 Vacancy Mechanism 98
6.4 Divacancy Mechanism 100
6.5 Interstitialcy Mechanism 100
6.6 Interstitial-substitutional Exchange Mechanisms 102
References .. 103

7 Correlation in Solid-State Diffusion 105
7.1 Interstitial Mechanism 107
7.2 Interstitialcy Mechanism 107
7.3 Vacancy Mechanism of Self-diffusion 108
7.3.1 A ‘Rule of Thumb’ 108
7.3.2 Vacancy-tracer Encounters 109
7.3.3 Spatial and Temporal Correlation 112
7.3.4 Calculation of Correlation Factors 112
7.4 Correlation Factors of Self-diffusion 115
7.5 Vacancy-mediated Solute Diffusion 116
7.5.1 Face-Centered Cubic Solvents 117
7.5.2 Body-Centered Cubic Solvents 120
7.5.3 Diamond Structure Solvents 121
7.6 Concluding Remarks ... 122
References .. 124
8 Dependence of Diffusion on Temperature and Pressure ... 127

8.1 Temperature Dependence .. 127
 8.1.1 The Arrhenius Relation 127
 8.1.2 Activation Parameters – Examples 130

8.2 Pressure Dependence ... 132
 8.2.1 Activation Volumes of Self-diffusion 135
 8.2.2 Activation Volumes of Solute Diffusion 139
 8.2.3 Activation Volumes of Ionic Crystals 140

8.3 Correlations between Diffusion and Bulk Properties 141
 8.3.1 Melting Properties and Diffusion 141
 8.3.2 Activation Parameters and Elastic Constants 146
 8.3.3 Use of Correlations 147

References .. 147

9 Isotope Effect of Diffusion .. 151

9.1 Single-jump Mechanisms ... 151

9.2 Collective Mechanisms ... 155

9.3 Isotope Effect Experiments 155

References .. 159

10 Interdiffusion and Kirkendall Effect 161

10.1 Interdiffusion ... 161
 10.1.1 Boltzmann Transformation 162
 10.1.2 Boltzmann-Matano Method 163
 10.1.3 Sauer-Freise Method 166

10.2 Intrinsic Diffusion and Kirkendall Effect 168

10.3 Darken Equations ... 170

10.4 Darken-Manning Equations 172

10.5 Microstructural Stability of the Kirkendall Plane 173

References .. 176

11 Diffusion and External Driving Forces 179

11.1 Overview .. 179

11.2 Fick’s Equations with Drift 181

11.3 Nernst-Einstein Relation 182

11.4 Nernst-Einstein Relation for Ionic Conductors and Haven Ratio .. 184

11.5 Nernst-Planck Equation – Interdiffusion in Ionic Crystals ... 186

11.6 Nernst-Planck Equation versus Darken Equation 188

References .. 189

12 Irreversible Thermodynamics and Diffusion 191

12.1 General Remarks .. 191

12.2 Phenomenological Equations of Isothermal Diffusion 193
 12.2.1 Tracer Self-Diffusion in Element Crystals 193
12.2.2 Diffusion in Binary Alloys 195
12.3 The Phenomenological Coefficients 199
 12.3.1 Phenomenological Coefficients, Tracer Diffusivities, and Jump Models 202
 12.3.2 Sum Rules – Relations between Phenomenological Coefficients 204
References ... 205

Part II Experimental Methods

13 Direct Diffusion Studies 209
 13.1 Direct versus Indirect Methods 209
 13.2 The Various Diffusion Coefficients 212
 13.2.1 Tracer Diffusion Coefficients 212
 13.2.2 Interdiffusion and Intrinsic Diffusion Coefficients 214
 13.3 Tracer Diffusion Experiments 215
 13.3.1 Profile Analysis by Serial Sectioning 217
 13.3.2 Residual Activity Method 222
 13.4 Isotopically Controlled Heterostructures 223
 13.5 Secondary Ion Mass Spectrometry (SIMS) 224
 13.6 Electron Microprobe Analysis (EMPA) 227
 13.7 Auger-Electron Spectroscopy (AES) 230
 13.8 Ion-beam Analysis: RBS and NRA 231
References ... 234

14 Mechanical Spectroscopy 237
 14.1 General Remarks 237
 14.2 Anelasticity and Internal Friction 239
 14.3 Techniques of Mechanical Spectroscopy 242
 14.4 Examples of Diffusion-related Anelasticity 244
 14.4.1 Snoek Effect (Snoek Relaxation) 244
 14.4.2 Zener Effect (Zener Relaxation) 247
 14.4.3 Gorski Effect (Gorski Relaxation) 248
 14.4.4 Mechanical Loss in Ion-conducting Glasses ... 249
 14.5 Magnetic Relaxation 250
References ... 251

15 Nuclear Methods .. 253
 15.1 General Remarks 253
 15.2 Nuclear Magnetic Relaxation (NMR) 253
 15.2.1 Fundamentals of NMR 254
 15.2.2 Direct Diffusion Measurement by Field-Gradient NMR 256
 15.2.3 NMR Relaxation Methods 258
15.3 Mössbauer Spectroscopy (MBS) .. 264
15.4 Quasielastic Neutron Scattering (QENS) 269
 15.4.1 Examples of QENS studies 278
 15.4.2 Advantages and Limitations of MBS and QENS 279
References ... 281

16 Electrical Methods ... 285
 16.1 Impedance Spectroscopy ... 285
 16.2 Spreading Resistance Profiling 290
References ... 293

Part III Diffusion in Metallic Materials

17 Self-diffusion in Metals ... 297
 17.1 General Remarks .. 297
 17.2 Cubic Metals .. 299
 17.2.1 FCC Metals – Empirical Facts 299
 17.2.2 BCC Metals – Empirical Facts 301
 17.2.3 Monovacancy Interpretation 302
 17.2.4 Mono- and Divacancy Interpretation 303
 17.3 Hexagonal Close-Packed and Tetragonal Metals 306
 17.4 Metals with Phase Transitions 308
References ... 311

18 Diffusion ofInterstitial Solutes in Metals 313
 18.1 ‘Heavy’ Interstitial Solutes C, N, and O 313
 18.1.1 General Remarks .. 313
 18.1.2 Experimental Methods 314
 18.1.3 Interstitial Diffusion in Dilute Interstitial Alloys 316
 18.2 Hydrogen Diffusion in Metals ... 317
 18.2.1 General Remarks .. 317
 18.2.2 Experimental Methods 318
 18.2.3 Examples of Hydrogen Diffusion 320
 18.2.4 Non-Classical Isotope Effects 323
References ... 324

19 Diffusion in Dilute Substitutional Alloys 327
 19.1 Diffusion of Impurities ... 327
 19.1.1 ‘Normal’ Impurity Diffusion 327
 19.1.2 Impurity Diffusion in Al 332
 19.2 Impurity Diffusion in ‘Open’ Metals –
 Dissociative Mechanism ... 333
 19.3 Solute Diffusion and Solvent Diffusion in Alloys 336
References ... 338
20 Diffusion in Binary Intermetallics ... 341
 20.1 General Remarks .. 341
 20.2 Influence of Order- Disorder Transitions 344
 20.3 B2 Intermetallics ... 346
 20.3.1 Diffusion Mechanisms in B2 Phases 347
 20.3.2 Example B2 NiAl .. 351
 20.3.3 Example B2 Fe-Al ... 353
 20.4 L12 Intermetallics .. 355
 20.5 D03 Intermetallics .. 357
 20.6 Uniaxial Intermetallics ... 360
 20.6.1 L10 Intermetallics ... 360
 20.6.2 Molybdenum Disilicide (C11b structure) 362
 20.7 Laves Phases .. 364
 20.8 The Cu3Au Rule .. 366
References ... 367

21 Diffusion in Quasicrystalline Alloys 371
 21.1 General Remarks on Quasicrystals 371
 21.2 Diffusion Properties of Quasicrystals 373
 21.2.1 Icosahedral Quasicrystals 374
 21.2.2 Decagonal Quasicrystals 379
References ... 381

Part IV Diffusion in Semiconductors

22 General Remarks on Semiconductors 385
 22.1 ‘Semiconductor Age’ and Diffusion 386
 22.2 Specific Features of Semiconductor Diffusion 389
References ... 392

23 Self-diffusion in Elemental Semiconductors 395
 23.1 Intrinsic Point Defects and Diffusion 396
 23.2 Germanium ... 398
 23.3 Silicon .. 402
References ... 406

24 Foreign-Atom Diffusion in Silicon and Germanium 409
 24.1 Solubility and Site Occupancy 409
 24.2 Diffusivities and Diffusion Modes 412
 24.2.1 Interstitial Diffusion ... 414
 24.2.2 Dopant Diffusion ... 416
 24.2.3 Diffusion of Hybrid Foreign Elements 420
 24.3 Self- and Foreign Atom Diffusion – a Summary 421
References ... 422
25 Interstitial-Substitutional Diffusion .. 425
 25.1 Combined Dissociative and Kick-out Diffusion 425
 25.1.1 Diffusion Limited by the Flow of Intrinsic Defects 427
 25.1.2 Diffusion Limited by the Flow of Interstitial Solutes 429
 25.1.3 Numerical Analysis of an Intermediate Case 430
 25.2 Kick-out Mechanism ... 431
 25.2.1 Basic Equations and two Solutions 431
 25.2.2 Examples of Kick-Out Diffusion 434
 25.3 Dissociative Mechanism .. 439
 25.3.1 Basic Equations .. 439
 25.3.2 Examples of Dissociative Diffusion 440

References ... 445

Part V Diffusion and Conduction
in Ionic Materials

26 Ionic Crystals ... 449
 26.1 General Remarks ... 449
 26.2 Point Defects in Ionic Crystals 451
 26.2.1 Intrinsic Defects .. 452
 26.2.2 Extrinsic Defects ... 454
 26.3 Methods for the Study of Defect and Transport Properties 456
 26.4 Alkali Halides ... 458
 26.4.1 Defect Motion, Tracer Self-diffusion, and Ionic Conduction 458
 26.4.2 Example NaCl ... 462
 26.4.3 Common Features of Alkali Halides 467
 26.5 Silver Halides AgCl and AgBr 468
 26.5.1 Self-diffusion and Ionic Conduction 469
 26.5.2 Doping Effects .. 471

References ... 473

27 Fast Ion Conductors .. 475
 27.1 Fast Silver-Ion Conductors .. 477
 27.1.1 AgI and related Simple Anion Structures 477
 27.1.2 RbAg₄I₅ and related Compounds 479
 27.2 PbF₂ and other Halide Ion Conductors 480
 27.3 Stabilised Zirconia and related Oxide Ion Conductors 481
 27.4 Perovskite Oxide Ion Conductors 482
 27.5 Sodium β-Alumina and related Materials 482
 27.6 Lithium Ion Conductors .. 484
 27.7 Polymer Electrolytes .. 485

References ... 488
Part VI Diffusion in Glasses

28 The Glassy State .. 493
 28.1 What is a Glass? .. 493
 28.2 Volume-Temperature Diagram 494
 28.3 Temperature-Time-Transformation Diagram 496
 28.4 Glass Families .. 498
 References .. 501

29 Diffusion in Metallic Glasses 503
 29.1 General Remarks .. 503
 29.2 Structural Relaxation and Diffusion 506
 29.3 Diffusion Properties of Metallic Glasses 509
 29.4 Diffusion and Viscosity in Glass-forming Alloys 517
 References .. 518

30 Diffusion and Ionic Conduction in Oxide Glasses 521
 30.1 General Remarks .. 521
 30.2 Experimental Methods 526
 30.3 Gas Permeation .. 529
 30.4 Examples of Diffusion and Ionic Conduction 530
 References .. 542

Part VII Diffusion along High-Diffusivity Paths
and in Nanomaterials

31 High-diffusivity Paths in Metals 547
 31.1 General Remarks .. 547
 31.2 Diffusion Spectrum ... 548
 31.3 Empirical Rules for Grain-Boundary Diffusion 549
 31.4 Lattice Diffusion and Microstructural Defects 551
 References .. 552

32 Grain-Boundary Diffusion 553
 32.1 General Remarks .. 553
 32.2 Grain Boundaries .. 554
 32.2.1 Low- and High-Angle Grain Boundaries 555
 32.2.2 Special High-Angle Boundaries 557
 32.3 Diffusion along an Isolated Boundary (Fisher Model) 559
 32.4 Diffusion Kinetics in Polycrystals 568
 32.4.1 Type A Kinetics Regime 568
 32.4.2 Type B Kinetics Regime 570
 32.4.3 Type C Kinetics Regime 574
Diffusion in Solids
Fundamentals, Methods, Materials, Diffusion-Controlled Processes
Mehrer, H.
2007, XIX, 654 p., Hardcover
ISBN: 978-3-540-71486-6