Subdifferentials of Lower Semicontinuous Functionals

9.1 Fréchet Subdifferentials: First Properties

In this section we study another kind of derivative-like concepts.

Definition 9.1.1 Assume that E is a Banach space, $f : E \to \mathbb{R}$ is proper and l.s.c., and $\bar{x} \in \text{dom } f$.

(a) The functional f is said to be Fréchet subdifferentiable (F-subdifferentiable) at \bar{x} if there exists $x^* \in E^*$, the F-subderivative of f at \bar{x}, such that

$$\liminf_{y \to 0} \frac{f(\bar{x} + y) - f(\bar{x}) - \langle x^*, y \rangle}{\|y\|} \geq 0. \quad (9.1)$$

(b) The functional f is said to be viscosity subdifferentiable at \bar{x} if there exist $x^* \in E^*$, the viscosity subderivative of f at \bar{x}, and a C^1-function $g : E \to \mathbb{R}$ such that $g'(\bar{x}) = x^*$ and $f - g$ attains a local minimum at \bar{x}.

If, in particular,

$$g(x) = \langle x^*, x - \bar{x} \rangle - \sigma \|x - \bar{x}\|^2$$

with some positive constant σ, then x^* is called proximal subgradient of f at \bar{x}. The sets

$$\partial_F f(\bar{x}) := \text{set of all F-subderivatives of } f \text{ at } \bar{x},$$

$$\partial_V f(\bar{x}) := \text{set of all viscosity subderivatives of } f \text{ at } \bar{x},$$

$$\partial_P f(\bar{x}) := \text{set of all proximal subgradients of } f \text{ at } \bar{x}$$

are called Fréchet subdifferential (F-subdifferential), viscosity subdifferential, and proximal subdifferential of f at \bar{x}, respectively.

Remark 9.1.2 Observe that the function g in Definition 9.1.1(b) can always be chosen such that $(f - g)(\bar{x}) = 0$ (cf. Fig. 9.1).

We study the relationship between the different notions.
Proposition 9.1.3 Assume that E is a Banach space, $f : E \to \mathbb{R}$ is proper and l.s.c., and $\bar{x} \in \text{dom } f$. Then $\partial_V f(\bar{x}) \subseteq \partial_F f(\bar{x})$.

Proof. See Exercise 9.8.1. \hfill \Box

Remark 9.1.4 Notice that $\partial_F f(\bar{x})$ and $\partial_V f(\bar{x})$ can be defined as above for any proper, not necessarily l.s.c. functional f. However, if $\partial_F f(\bar{x})$ (in particular, $\partial_V f(\bar{x})$) is nonempty, then in fact f is l.s.c. at \bar{x} (see Exercise 9.8.2).

The next result is an immediate consequence of the definition of the viscosity F-subdifferential and Proposition 9.1.3.

Proposition 9.1.5 (Generalized Fermat Rule) If the proper l.s.c. functional $f : E \to \mathbb{R}$ attains a local minimum at \bar{x}, then $o \in \partial_V f(\bar{x})$ and in particular $o \in \partial_F f(\bar{x})$.

We shall now show that we even have $\partial_V f(\bar{x}) = \partial_F f(\bar{x})$ provided E is a Fréchet smooth Banach space. We start with an auxiliary result.

Lemma 9.1.6 Let E be a Fréchet smooth Banach space and $\|\cdot\|$ be an equivalent norm on E that is F-differentiable on $E \setminus \{o\}$. Then there exist a functional $d : E \to \mathbb{R}_+$ and a number $\alpha > 1$ such that:

(a) d is bounded, L-continuous on E and continuously differentiable on $E \setminus \{o\}$.

(b) $\|x\| \leq d(x) \leq \alpha \|x\|$ if $\|x\| \leq 1$ and $d(x) = 2$ if $\|x\| \geq 1$.

Proof. Let $b : E \to \mathbb{R}$ be the bump functional of Lemma 8.4.1. Define $d : E \to \mathbb{R}_+$ by $d(o) := 0$ and

$$d(x) := \frac{2}{s(x)}, \quad \text{where} \quad s(x) := \sum_{n=0}^{\infty} b(nx) \quad \text{for } x \neq o.$$
We show that d has the stated properties:

Ad (b). First notice that the series defining s is locally a finite sum. In fact, if $x \neq o$, then we have

$$b(nx) = 0 \quad \forall x \in B(x, \|x\|/2) \quad \forall n \geq 2\|x\|. \quad (9.2)$$

Moreover, $s(x) \geq b(o) = 1$ for any $x \neq o$. Hence d is well defined. We have

$$d(E) \subseteq [0, 2] \quad \text{and} \quad d(x) = 2 \quad \text{whenever} \quad \|x\| \geq 1.$$

Further it is clear that

$$[x \neq o \text{ and } b(nx) \neq 0] \quad \implies \quad n < 1/\|x\| \quad (9.3)$$

and so, since $0 \leq b \leq 1$, we conclude that $s(x) \leq 1 + 1/\|x\|$. Hence $d(x) \geq 2\|x\|/(1 + \|x\|)$, which shows that $d(x) \geq \|x\|$ whenever $\|x\| \leq 1$. Since $b(o) = 1$ and b is continuous at o, there exists $\eta > 0$ such that $b(x) \geq 1/2$ whenever $\|x\| \leq \eta$. Let $x \in E$ and $m \geq 1$ be such that $\eta/(m + 1) < \|x\| \leq \eta/m$.

It follows that

$$s(x) \geq \sum_{n=1}^{m} b(nx) \geq \frac{m + 1}{2} > \frac{\eta}{2\|x\|}$$

and so $d(x) < (4/\eta)\|x\|$ whenever $\|x\| \leq \eta$. This and the boundedness of d imply that $d(x)/\|x\|$ is bounded on $E \setminus \{o\}$. This verifies (b).

Ad (a). Since by (9.2) the sum defining s is locally finite, the functional d is continuously differentiable on $E \setminus \{o\}$. For any $x \neq o$ we have

$$d'(x) = -2 \left(\sum_{n=0}^{\infty} nb'(nx) \right) \left(\sum_{n=0}^{\infty} b(nx) \right)^{-2} = -\frac{(d(x))^2}{2} \sum_{n=0}^{\infty} nb'(nx).$$

Since b is L-continuous, $\lambda := \sup\{\|b'(x)\| \mid x \in E\}$ is finite and we obtain for any $x \neq o$,

$$\left\| \sum_{n=0}^{\infty} nb'(nx) \right\| \leq \lambda \sum_{n=0}^{\|x\|^{-1}} n \leq \lambda \left(1 + \frac{1}{\|x\|} \right)^2,$$

here the first inequality holds by (9.3). This estimate together with (b) yields

$$\|d'(x)\| \leq \lambda \max\{\alpha, 2\}^2(\|x\| + 1)^2,$$

showing that d' is bounded on $B(o, 1) \setminus \{o\}$. Since d' is zero outside $B(o, 1)$, it follows that d' is bounded on $E \setminus \{o\}$. Hence d is L-continuous on E. This verifies (a).

Now we can supplement Proposition 9.1.3.

Theorem 9.1.7 Let E be a Fréchet smooth Banach space, $f : E \to \overline{\mathbb{R}}$ be a proper l.s.c. functional, and $\bar{x} \in \text{dom} \ f$. Then $\partial_{V} f(\bar{x}) = \partial_{F} f(\bar{x})$.

Proof. In view of Proposition 9.1.3 it remains to show that \(\partial_F f(\bar{x}) \subseteq \partial_V f(\bar{x}) \). Thus let \(x^* \in \partial_F f(\bar{x}) \). Replacing \(f \) with the functional \(\bar{f} : E \to \mathbb{R} \) defined by
\[
\bar{f}(y) := \sup \{ f(\bar{x} + y) - f(\bar{x}) - \langle x^*, y \rangle, -1 \}, \quad y \in E,
\]
we have \(\rho \in \partial_V \bar{f}(o) \). We show that \(o \in \partial_V \bar{f}(o) \). Notice that \(\bar{f}(\bar{x}) = 0 \) and \(\bar{f} \) is bounded below. By (9.1) we obtain
\[
\liminf_{y \to o} \frac{\bar{f}(y)}{\|y\|} \geq 0. \tag{9.4}
\]
Define \(\rho : \mathbb{R}_+ \to \mathbb{R} \) by \(\rho(t) := \inf \{ \bar{f}(y) \| y \| \leq t \} \). Then \(\rho \) is nonincreasing, \(\rho(0) = 0 \) and \(\rho \leq 0 \). This and (9.4) give
\[
\lim_{t \to 0} \frac{\rho(t)}{t} = 0. \tag{9.5}
\]
Define \(\rho_1 \) and \(\rho_2 \) on \((0, +\infty) \) by
\[
\rho_1(t) := \int_t^{e^t} \frac{\rho(s)}{s} \, ds, \quad \rho_2(t) := \int_t^{e^t} \frac{\rho_1(s)}{s} \, ds.
\]
Since \(\rho \) is nonincreasing, we have
\[
\rho_1(et) = \int_{et}^{e^{et}} \frac{\rho(s)}{s} \, ds \geq \rho(e^2t) \int_{et}^{e^t} \frac{1}{s} \, ds = \rho(e^2t). \tag{9.6}
\]
Since \(\rho_1 \) is also nonincreasing, we obtain analogously \(\rho_1(et) \leq \rho_2(t) \leq 0 \). This and (9.5) yield
\[
\lim_{t \downarrow 0} \frac{\rho_2(t)}{t} = \lim_{t \downarrow 0} \frac{\rho_1(t)}{t} = \lim_{t \downarrow 0} \frac{\rho(t)}{t} = 0. \tag{9.7}
\]
Now define \(\tilde{g} : E \to \mathbb{R} \) by \(\tilde{g}(x) := \rho_2(d(x)) \) for \(x \neq o \) and \(\tilde{g}(o) := 0 \), where \(d \) denotes the functional in Lemma 9.1.6. Recall that \(d(x) \neq 0 \) whenever \(x \neq o \). Since \(\rho_1 \) is continuous on \((0, +\infty) \) and \(\rho_2 \) is continuously differentiable on \((0, +\infty) \), the chain rule implies that \(\tilde{g} \) is continuously differentiable on \(E \setminus \{o\} \) with derivative
\[
\tilde{g}'(x) = \frac{\rho_1(\text{ed}(x)) - \rho_1(d(x))}{d(x)} \cdot d'(x), \quad x \neq o.
\]
The properties of \(d \) and (9.7) further imply that \(\lim_{x \to o} \|\tilde{g}'(x)\| = 0 \). Therefore it follows as a consequence of the mean value theorem that \(\tilde{g} \) is also \(F \)-differentiable at \(o \) with \(\tilde{g}'(o) = o \), and \(\tilde{g}' \) is continuous at \(o \). Since \(\rho \) is nonincreasing, we have \(\rho_2(t) \leq \rho_1(t) \leq \rho(t) \); here, the second inequality follows analogously as (9.6) and the first is a consequence of the second. Let \(\|x\| \leq 1 \). Then \(\|x\| \leq d(x) \), and since \(\rho_2 \) is nonincreasing (as \(\rho_1 \) is nonincreasing), we obtain
\[
(f - g)(x) = f(x) - \rho_2(d(x)) \geq \tilde{f}(x) - \rho_2(\|x\|) \geq \tilde{f}(x) - \rho(\|x\|) \geq 0.
\]
Since \(0 = (f - g)(o)\), we see that \(f - g\) attains a local minimum at \(o\). Hence \(o \in \partial_V f(o)\) and so \(x^* \in \partial_V f(\bar{x})\).

\textbf{Remark 9.1.8} Let \(E, f\), and \(\bar{x}\) be as in Theorem 9.1.7. Further let \(x^* \in \partial_V f(\bar{x})\), which by Theorem 9.1.7 is equivalent to \(x^* \in \partial_F f(\bar{x})\). Then there exists a concave \(C^1\) function \(g : E \to \mathbb{R}\) such that \(g'(\bar{x}) = x^*\) and \(f - g\) attains a local minimum at \(\bar{x}\) (cf. Fig. 9.1); see Exercise 9.8.4.

In order to have both the limit definition and the viscosity definition of \(F\)-subderivatives at our disposal, we shall in view of Theorem 9.1.7 assume that \(E\) is a Fréchet smooth Banach space and we denote the common \(F\)-subdifferential of \(f\) at \(\bar{x}\) by \(\partial_F f(\bar{x})\).

The relationship to classical concepts is established in Proposition 9.1.9. In this connection recall that

\[
\partial_F f(\bar{x}) \subseteq \partial_F f(\bar{x}).
\]

\textbf{Proposition 9.1.9} Assume that \(E\) is a Fréchet smooth Banach space and \(f : E \to \mathbb{R}\) is proper and l.s.c.

(a) If the directional \(G\)-derivative \(f_G(\bar{x}, \cdot)\) of \(f\) at \(\bar{x} \in \text{dom } f\) exists on \(E\), then for any \(x^* \in \partial_F f(\bar{x})\) (provided there exists one),

\[
\langle x^*, y \rangle \leq f_G(\bar{x}, y) \quad \forall y \in E.
\]

If, in particular, \(f\) is \(G\)-differentiable at \(\bar{x} \in \text{dom } f\), then \(\partial_F f(\bar{x}) \subseteq \{f'(\bar{x})\}\).

(b) If \(f \in C^1(U)\), where \(U \subseteq E\) is nonempty and open, then \(\partial_F f(x) = \{f'(x)\}\) for any \(x \in U\).

(c) If \(f \in C^2(U)\), where \(U \subseteq E\) is nonempty and open, then \(\partial_F f(x) = \partial_F f(x) = \partial_v f(x) = \{f'(x)\}\) for any \(x \in U\).

(d) If \(f\) is convex, then \(\partial_F f(x) = \partial_F f(x) = \partial f(x)\) for any \(x \in \text{dom } f\).

(e) If \(f\) is locally \(L\)-continuous on \(E\), then \(\partial_F f(x) \subseteq \partial f(x)\) for any \(x \in E\).

\textbf{Proof.}

(a) Let \(x^* \in \partial_F f(\bar{x})\) be given. Then there exist a \(C^1\) function \(g\) and a number \(\epsilon > 0\) such that \(g'(\bar{x}) = x^*\) and for each \(x \in B(\bar{x}, \epsilon)\) we have

\[
(f - g)(x) \geq (f - g)(\bar{x}) \quad \forall x \in B(\bar{x}, \epsilon).
\]

Now let \(y \in E\). Then for each \(\tau > 0\) sufficiently small we have \(\bar{x} + \tau y \in B(\bar{x}, \epsilon)\) and so

\[
\frac{1}{\tau}(f(\bar{x} + \tau y) - f(\bar{x})) \geq \frac{1}{\tau}(g(\bar{x} + \tau y) - g(\bar{x})).
\]

Letting \(\tau \downarrow 0\) it follows that \(f_G(\bar{x}, y) \geq (g'(\bar{x}), y) = \langle x^*, y \rangle\). If \(f\) is \(G\)-differentiable at \(\bar{x}\), then by linearity the latter inequality passes into \(f'(\bar{x}) = x^*\).
(b) It is obvious that \(f'(x) \in \partial F f(x) \) for each \(x \in U \). This and (a) imply \(\partial F f(x) = \{ f'(x) \} \) for each \(x \in U \).

(c) By Proposition 3.5.1 we have \(f'(x) \in \partial F f(x) \), which together with (a) and (9.8) verifies the assertion.

(d) It is evident that \(\partial f(\bar{x}) \subseteq \partial F f(\bar{x}) \subseteq \partial F f(\bar{x}) \) for each \(\bar{x} \in \text{dom } f \). Now let \(x^* \in \partial F f(\bar{x}) \) be given. As in the proof of (a) let \(g \) and \(\epsilon \) be such that (9.9) holds. Further let \(x \in E \). If \(\tau \in (0,1) \) is sufficiently small, then
\[
(1 - \tau) f(\bar{x}) + \tau f(x) \geq f((1 - \tau)\bar{x} + \tau x) \geq f(\bar{x}) + g((1 - \tau)\bar{x} + \tau x) - g(\bar{x}).
\]

It follows that
\[
f(x) - f(\bar{x}) \geq \frac{g(\bar{x} + \tau(x - \bar{x})) - g(\bar{x})}{\tau}.
\]
Letting \(\tau \downarrow 0 \), we see that
\[
f(x) - f(\bar{x}) \geq \langle g'(\bar{x}), x - \bar{x} \rangle = \langle x^*, x - \bar{x} \rangle.
\]
Since \(x \in E \) was arbitrary, we conclude that \(x^* \in \partial f(\bar{x}) \).

(e) See Exercise 9.8.5. \(\square \)

In Sect. 9.5 we shall establish the relationship between the Fréchet subdifferential and the Clarke subdifferential.

9.2 Approximate Sum and Chain Rules

Convention. Throughout this section, we assume that \(E \) is a Fréchet smooth Banach space, and \(\| \cdot \| \) is a norm on \(E \) that is F-differentiable on \(E \setminus \{ 0 \} \).

Recall that we write \(\omega(x) := \| x - \bar{x} \| \), and in particular \(\omega(x) := \| x \| \), \(x \in E \).

One way to develop subdifferential analysis for l.s.c. functionals is to start with sum rules. It is an easy consequence of the definition of the F-subdifferential that we have
\[
\partial F f_1(\bar{x}) + \partial F f_2(\bar{x}) \subseteq \partial F (f_1 + f_2)(\bar{x}).
\]
But the reverse inclusion
\[
\partial F (f_1 + f_2)(\bar{x}) \subseteq \partial F f_1(\bar{x}) + \partial F f_2(\bar{x}) \tag{9.10}
\]
do not hold in general.
Nonsmooth Analysis
Schirrotzek, W.
2007, XII, 378 p. 31 illus., Softcover
ISBN: 978-3-540-71332-6