Abstract During the last 20 years data assimilation has gradually reached a mature center stage position at both Numerical Weather Prediction centers as well as being at the center of activities at many federal research institutes as well as at many universities.

The research encompasses now activities which involve, beside meteorologists and oceanographers at operational centers or federal research facilities, many in the applied and computational mathematical research communities. Data assimilation or 4-D VAR extends now also to other geosciences fields such as hydrology and geology and results in the publication of an ever increasing number of books and monographs related to the topic.

In this short survey article we provide a brief introduction providing some historical perspective and background, a survey of data assimilation prior to 4-D VAR and basic concepts of data assimilation.

I first proceed to outline the early 4-D VAR stages (1980–1990) and addresses in a succinct manner the period of the 1990s that saw the major developments and the flourishing of all aspects of 4-D VAR both at operational centers and at research Universities and Federal Laboratories. Computational aspects of 4-D Var data assimilation addressing computational burdens as well as ways to alleviate them are briefly outlined.

Brief interludes are provided for each period surveyed allowing the reader to have a better perspective A brief survey of different topics related to state of the art 4-D Var today is then presented and we conclude with what we perceive to be main directions of research and the future of data assimilation and some open problems. We will strive to use the unified notation of Ide et al. (J Meteor Soc Japan 75:181–189, 1997).

Keywords: 4-D VAR data assimilation · 3-D VAR · parameter estimation · minimization methods
1 Introduction

Data assimilation in atmospheric sciences started from the fact that NWP is an initial value problem. This since we start at whatever constitutes the present state and use the NWP model to forecast its evolution. Early work by Richardson (1922) and Charney et al. (1950) were based on hand interpolations (Kalnay 2003). This in order to combine present and past observations of the state of the atmosphere with results from the model (also referred to as “Mathematical” model). Since this was a rather tedious procedure, efforts to obtain “automatic” objective analysis—the first methods have been developed by Panofsky (1949), Gilchrist and Cressman (1954), Cressman (1959), and Barnes (1964). Use of prior information to supplement rather insufficient data was pioneered by Berghthorsson and Dóo (1955), Cressman (1959) followed by the comprehensive work of Lev Gandin (1965).

Early reviews of data assimilation whose purpose is that of “using all available information (data) to determine as accurately as possible the state of the atmospheric (or oceanic) flow” (Talagrand 1997) were provided by Le Dimet and Navon (1988), an in-depth survey of Ghil and Malonotte-Rizzoli (1991) as well as by the outstanding book of Daley “Atmospheric Data Analysis” (Daley 1991).

A collection of papers by Ghil et al. (1997) in “Data Assimilation in Meteorology and Oceanography: Theory and Practice” (Ghil et al. 1997) summarizes state of the art of data assimilation for that period. See also a short survey by Zupanski and Kalnay (1999) along with the excellent book of Kalnay (2003) “Atmospheric Modeling, Data Assimilation and Predictability”. An early effort linking Optimal Interpolation (O.I.) with the variational method was done by Sasaki (1955, 1958) and in more final form by Sasaki (1969, 1970a, b, c, d) which can be viewed as a 3-D VAR approach. It was Lorenc (1986) that showed that OI and 3-D VAR were equivalent provided the cost functional assumes the form:

\[
J = \frac{1}{2} \left\{ [y^o - H(x)]^T R^{-1} [y^o - H(x)] + (x - x^b)^T B^{-1} (x - x^b) \right\}
\] (1)

The first term measures the distance of forecast field \(x \) to observations \(y^o \) and the second term measures the distance to background \(x^b \).

The analysis \(x \) is obtained by adding the innovation to the model forecast with weights \(W \) based on estimated statistical error covariances of forecast and observations.

\[
x = x^b + W [y^o - H(x^b)]
\] (2)

In this brief review we first provide some historical background to the data assimilation effort along with some basic concepts of data assimilation. We then proceed to survey in a section the early stages (1980–1990) of 4-D VAR data assimilation with brief interludes summarizing and providing perspectives as we go along. In the following section we address some computational aspects of data assimilation such as issues of automatic differentiation, and the incremental method which alleviated the computational burden of 4-D VAR and made it operationally viable at large operational NWP centers. A short section is dedicated to state-of the art of data assimilation at present time and we close with a short section outlining directions of development of 4-D VAR in the future.

2 Relationship Between OI and 3-D VAR

The terminology of 4-D VAR (4-dimensional data assimilation) was originally used in research centers in the context of using continuous data assimilation satellite data leading to the First Global Atmosphere Research Program (GARP) Global Experiment, Charney, Halem and Jastrow (1969).

Insertion of observations directly into primitive equations models excited spurious inertia-gravity oscillations in the model and required the use of damping schemes (Matsuno 1966) for damping the high-frequency components. A full-account of these techniques and the history of continuous data assimilation are provided in the seminal book of Daley (1991). This review will survey some aspects of variational data assimilation while only providing a brief outline of methodologies that prevailed prior to the 1980s. We will rely on work of Kalnay (2003), Daley (1991), Talagrand (1997), Zupanski and Kalnay (1999), Ghil et al. (Eds) (1997), works of the present author and his collaborators, the review of Ghil and Malonotte-Rizzoli (1991) and an early review that remained an unpublished technical report (Le Dimet and Navon 1988).

Panofsky (1949) is credited for pioneering the first objective analysis based on 2-D polynomial interpolation. It was followed by Gilchrist and Cressman (1954) who put forward an interpolation scheme for geopotential field as a quadratic polynomial in x and y

\[E(x, y) = a_{00} + a_{10}x + a_{01}y + a_{20}x^2 + a_{11}xy + a_{02}y^2, \]

then minimizing mean square difference between polynomial and observations within a radius of influence of the closest grid point,

\[
\min_{a_{ij}} E = \min_{a_{ij}} \left\{ \sum_{k=1}^{K} p_v \cdot \left(E_v^0 - E(x_v, y_v) \right)^2 \right. \\
+ \sum_{k=1}^{K} q_v \cdot \left\{ \left[u_v^0 - u_g(x_v, y_v) \right]^2 + \left[v_v^0 - v_g(x_v, y_v) \right]^2 \right\} \right\}
\]
where \(p_v \) and \(q_v \) were empirical weights and \(u_g \) and \(v_g \) the components of the geostrophic wind obtained from the gradient of geopotential height \(E(x,y) \) at observation point \(k \). \(K \) was total number of observations within the radius of influence. The introduction of first guess estimate is credited to have been introduced by Bergthorsson and D"o"os (1955). Usually either climatology or a combination of it with first guess was used in the analysis cycle. See also the influential work of Gandin (1965), translated from Russian by the Israeli program of Translations in 1965.

3 Successive Correction Method

The first analysis method in 4DDA was the successive correction method developed by Bergthorsson and D"o"os (1955) and by Cressman (1959). The field of background was chosen as a blend of forecast and climatology with a first estimate given by the first guess field

\[
f_i^0 = f_i^b.
\]

\(f_i^b \) background field estimated at the \(i \)-th grid point, \(f_i^0 \) being the zeroth iteration estimate of gridded field. This is hence followed by new iteration obtained by “successive corrections”

\[
f_i^{n+1} = f_i^n + \sum_{k=1}^{K_i^n} w_{ik}^n \left(f_k^0 - f_k^n \right) + \sum_{k=1}^{K_i^n} w_{ik}^n + \varepsilon^2
\]

\(f_i^n \)- \(n \)-th iteration estimate at \(i \)-th grid point,
\(f_i^0 \)- \(k \)-th observation surrounding grid point,
\(f_i^n \)- value of \(n \)-th field estimate calculated at observation point \(k \) derived by interpolation from nearest grid points,
\(\varepsilon^2 \)- estimate of ratio of observation error variance to background error variance.

The important ingredient is constituted by the weights \(w_{ik}^n \) which are related to a radius of influence. Cressman (1959) proposed the following weights in the SCM (Successive corrections method).

\[
w_{ik}^n = \frac{R_n^2 - r_{ik}^2}{R_n^2 + r_{ik}^2} \quad \text{if} \quad r_{ik}^2 \leq R_n^2
\]

\[
w_{ik}^n = 0 \quad \text{if} \quad r_{ik}^2 > R_n^2
\]

\(r_{ik}^2 \) square of distance between observation point \(r_k \) and a grid point at \(r_i \).

The controlling parameter is the radius of influence \(R_n \), allowed to vary between iterations while \(K_i^n \) is the number of observations within a radius of \(R_n \) of the grid point \(i \). If one reduces the radius of influence, this results in a field reflecting large
scales after first iteration—and tends towards smaller scales after additional iterations. For additional technical details see Daley (1991), Kalnay (2003).

Cressman (1959) took the coefficient \(\varepsilon^2 \) to be zero. For noisy data with errors it may lead to erroneous analysis. Taking \(\varepsilon^2 > 0 \) i.e. assuming observations with errors, allows some impact to the background field. Barnes (1964) defined the weights to follow a Gaussian or normal distribution

\[
\begin{align*}
 w_{ij} = \begin{cases}
 \exp \left(- \frac{r_{ik}^2}{d^2} \right) & \text{if } r_{ik} \leq d \\
 0 & \text{otherwise,}
 \end{cases}
\end{align*}
\]

(9)

where \(d \) is the radius of influence.

It uses an adaptive version where the radius of influence changes by a factor \(\gamma \)

\[
0 < \gamma < 1. \tag{10}
\]

It was shown by Bratseth (1986) that with an appropriate choice of weights these SCM iterative method analysis increments can be made to be the same as those obtained using optimal interpolation (OI). Lewis et al. (2006) quote also similar independent work done by Franke and Gordon (1983), Franke (1988) and Seaman (1988).

4 The Variational Calculus Approach

It was introduced in meteorology by Yoshi Sasaki in his PhD Thesis (1955) and later extended by him to include dynamic model laws (Sasaki 1969, 1970a, b, c). He proposed three basic types of variational formalism in the numerical variational analysis method. The basic formalisms are categorized into three areas: (1) “timewise localized” formalism, (2) formalism with strong constraint, and (3) a formalism with weak constraint. Exact satisfaction of selected prognostic equations was formulated as constraints in the functionals for the first two formalisms. This approach is now generically referred to as 3-D V AR.

In 3-D V AR one defines a cost function proportional to the square of the distance between analysis and both background and observations, and it was showed by Lorenc (1981, 1986) that the OI and the 3-D V AR approaches are equivalent provided the cost function is defined as

\[
J = \frac{1}{2} \left[y^o - H(x) \right]^T R^{-1} \left[y^o - H(x) \right] + (x - x^b)^T B^{-1} (x - x^b). \tag{11}
\]

where

- \(B \) is the background error covariance,
- \(R \) is the observation error covariance,
- \(H \) is an interpolation operator (or observation operator),
\(x^b \) is the first guess or background,
\(y^o \) is the observation,
\(y^o - H(x^b) \) are the observational increments

\[
x^a = x^b + W[y^o - H(x^b)]
\] (12)

\(W \) is a weight matrix based on statistical error covariances of forecast and observations.

5 Variational Methods

The start of variational methods is originally attributed to the work of Euler and Lagrange the seventeenth and eighteenth century. The Euler-Lagrange equation, developed by Leonhard Euler and Joseph-Louis Lagrange in the 1750s, is the major formula of the calculus of variations. It provides a way to solve for functions which extremize a given cost functional. It is widely used to solve optimization problems, and in conjunction with the action principle to calculate trajectories. Variational calculus has had a broad appeal due to its ability to derive behavior of an entire system without details related to system components. Broadly speaking variational calculus involves finding stationary points of functionals written as integral expressions. The general theory is rigorously explained in the work by Lanczos (1970) and Courant and Hilbert (1962).

Basic to the constrained minimization theory is the method of undetermined Lagrange multipliers where

\[
\lambda = (\lambda_1, \ldots, \lambda_n)^T
\] (13)

is a vector of \(n \) unknowns for the solution of

\[
\min f(x) \in \mathbb{R}^n
\] (14)

subject to \(g(x) = 0 \quad x \in \mathbb{R}^m \) (15)

and using the first-order conditions for a minimum we obtain using the first derivatives of the Lagrangian function

\[
L(\lambda, x) = f(x) + \lambda^T g(x)
\] (16)

\[
\nabla_x L(x, \lambda) = \frac{\partial f}{\partial x} + \lambda \frac{\partial g}{\partial x}
\] (17)

\[
\nabla_\lambda L(x, \lambda) = g(x)
\] (18)

The Lagrange multiplier \(\lambda \) can be viewed as measuring sensitivity of value of function \(f \) at a stationary point to changes in the constraint (see also Nocedal and Wright 2006).
One can show formally (see any text book on variational methods) that finding in a given domain of admissible functions \(u(x) \) the continuous first derivatives of a functional \(I \) for which \(I(u(x)) \) is a stationary value (i.e. any function which extremizes the cost functional) must also satisfy the ordinary differential equation called the Euler-Lagrange equation

\[
\frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \frac{\partial F}{\partial u'} = 0 \tag{19}
\]

where

\[
I(u(x)) = \int_{x_a}^{x_b} F(u(x)) \, dx \quad x_a \leq x \leq x_b \tag{20}
\]

\[
u' = \frac{du}{dx} \tag{21}
\]

As an example of a typical application of variational methods, consider work of Sasaki (1970a, b, c). Navon (1981) used it to enforce conservation of total enstrophy, total energy and total mass in one and two-dimensional shallow water equations models on a rotating place.

6 First Interlude

6.1 Situation in Data-Assimilation at Beginning of 1980s

Charney, Halem and Jastrow (1969) proposed that numerical models be used to assimilate newly available asynoptic data. The idea was to insert asynoptic temperature information obtained from satellite-born radiometers into the model at its true (asynoptic) time. Continuous data assimilation referred to frequent insertion of asynoptic data. Charney et al. (1969) experiment suggested continuous data assimilation I.G. Tadjbakhsh (1969). Problems of real data insertion soon emerged in the form of an inertia-gravity wave shock (Daley and Puri 1980) leading to essential rejection by the model of the information of real observational data. A remedy for continuous data assimilation of real data was to reduce the insertion interval to the time step of the model (Miyakoda et al. 1976). See also Talagrand and Miyakoda (1971).

Other approaches were via geostrophic wind correction outside the tropics or nudging also referred to as Newtonian relaxation (Hoke and Anthes 1976), Davis and Turner (1977). See also work of Talagrand (1981, 1987). Ghil, Halem and Atlas (1979), McPherson (1975). McPherson (1975) viewed data assimilation as “a process by which something is absorbed into something else”. During 1974 Marchuk proposed application of adjoint method in meteorology (Marchuk 1974 – see also Russian article of Marchuk 1967) and in 1976 Penenko and Obratsov used these methods to study adjoint sensitivity (Penenko and Obratsov 1976).
In 1969, Thompson had already put forward the idea that incorrect analyses at two successive times may be optimally adjusted to maintain dynamical consistency with a given prediction model (Thompson 1969). This may be viewed as a precursor to variational data assimilation. Since 1958, Marchuk and collaborators used adjoint methods for linear sensitivity analysis problems. Atmospheric issues were also addressed in the same fashion (see Marchuk 1974). Adjoint operators have been introduced by Lagrange (1760) and have been used in modern times since Wigner (1945) and by many others in different domains.

The advent of optimal control theory of partial differential equations is attributed to Bellman starting in the late 1950s Bellman (1957) (the Hamilton-Jacobi-Bellman equation) and to Pontryagin et al. (1962) (Pontryagin’s minimum principle). The major impetus in this area came from the monograph of Lions (1968) on optimal control of partial differential equations. It was to be that a former doctoral student of Lions, Francois Le Dimet, introduced the concepts of optimal control to the meteorological community starting in the early 1980s.

One major work which impacted in a serious way the adjoint sensitivity analysis was the work of Cacuci et al. (1980), D.G. Cacuci (1981a, 1981b). Historically one can trace back linear adjoint sensitivity to work of Wigner (1940–1942) (see Wigner 1945). See the lecture of Cacuci (2004). Wiener (1949) was the first to interpret physically the adjoint functions (see also Lewins 1965) as importance functions. As mentioned above Cacuci (1980–1981) presented a complete rigorous theory for adjoint sensitivity of general nonlinear systems of equations.

Le Dimet (1981) was then preparing his technical report at Clermont-Ferrand introducing for the first time optimal control methodology with variational adjustment to the meteorological community that led to the seminal paper by Le Dimet and Talagrand (1986).

7 Emergence of Early Data Assimilation Works

8 Optimal Interpolation (OI) Methods

Lev Gandin (1965) coined the term (OI) but the technique of statistical interpolation can be traced back to Kolmogorov (1941) and Wiener (1949) and the terminology of optimal interpolation was apparently due to Wiener (1949).
A review of the work of these two mathematicians is provided in the Yaglom (1962) book on stochastic processes (see Lewis et al. 2006). In atmospheric sciences use of statistical interpolation goes back to Eliassen (1954) while Krige (1951), used it in the mining industry.

Use of least-squares to obtain best estimate of state of the atmosphere by combining prior information which can consist of either a first guess or a background with observations which have errors. The concept of background field goes back to Gauss (1809). We wish to carry out a minimum variance estimation.

In a general form the optimal least-squares estimation is defined by the following interpolation equations

\[X^a = X_b + K(y - H[X_b]), \]

where \(K \) is a linear operator referred to as gain or weight matrix of the analysis and is given by

\[K = BH^T(HBH^T + R)^{-1}, \]

(23)

where \(X^a \) is the analysis model state,

\(H \)- an observation operator,

\(B \)- covariance matrix of the background errors \((X_b - X) \),

\(X \)- being the time model state,

\(X_b \)- background model state,

\(R \)- covariance matrix of observation errors.

The analysis error covariance matrix is

\[A = (I - KH)B(I - KH)^T + KRK^{-1} \]

(24)

If \(K \) is optimal least-squares gain, \(A \) becomes

\[A = (I - KH)B \]

(25)

(see proof in Bouttier and Courtier 1999).

One can show that the best linear unbiased estimator (Talagrand 1997; Bouttier and Courtier 1999) may be obtained as the solution of the following variational optimization problem.

\[\min J = (X - X_b)^TB^{-1}(X - X_b) + (y - H(X))^TR^{-1}(y - H(X)) \]

\[= J_b(X) + J_o(X) \]

(26)

One notes that if the background and observation error probability functions are Gaussian then \(X_a \) is also the maximum likelihood estimation of \(X_t \) (time). Probability density function represents a probability distribution in terms of integrals, being non-negative everywhere with an integral from \(-\infty\) to \(+\infty\) being equal to 1. More exactly a probability distribution has density \(f(x) \), if \(f(x) \) is a non-negative Lebesgue integrable function from \(R \rightarrow R \) such that the probability of the interval \([a,b]\) is given by \(\int_a^b f(x)dx \) for any two numbers \(a \) and \(b \).
For a comprehensive examination of OI in meteorology we refer to Lorenc (1981) and Lorenc (1986). The most important advantage of using statistical interpolation schemes such as OI and 3-D VAR instead of empirical schemes such as SCM (1959) is the fact that they are taking into account the correlation between observational increments.

How to estimate the prior error covariances B and R and the observation operator H? A difficult issue with observation operator is the case of satellite products such as radiances, a piece of information which cannot be directly used. The observation operator performs both interpolation from model grid to satellite observation location and then uses physical theory (such as in the case of radiances) to convert model column of temperature to synthetic radiances. Observation error covariance matrix R is obtained from instrument error estimates which, if independent mean that the covariance matrix R will be diagonal. This can facilitate computations.

Assume that background and observation error (covariances) are uncorrelated, the analysis error covariance matrix is given as

$$ A = (I - KH)B(I - KH)^T + KRK^T. \tag{27} $$

Solution of minimum covariance requires

$$ \frac{\partial}{\partial K} (\text{trace}(A)) = 0 \tag{28} $$

$$ \frac{\partial}{\partial A} (\text{trace}BAC) = B^T C^T \tag{29} $$

$$ \frac{\partial}{\partial t} (\text{trace}ABA^T) = A(B + B^T) \tag{30} $$

$$ \frac{\partial}{\partial K} (\text{trace}(A)) \equiv (I - KH)(B + B^T)H^T + K(R + R^T) \tag{31} $$

$$ = -2(I - KH)BH^T + 2KR $$

$$ = -2BH^T + 2K(BH^T + R) $$

$$ = 0 $$

from which we obtain the optimal weight K

$$ K = BH^T (HBH^T + R)^{-1}. \tag{32} $$

9 Estimating Background Error Covariances

The background error covariance is both the most difficult error covariance to estimate and it has a most important impact on results (Kalnay 2003; Navon et al. 2005). This since it is primarily the background error covariance that determines the spread
of information as well as allowing observations of wind field to enrich information about the mass field and vice-versa.

In order to render modelling of B practically feasible some compromises had to be made with respect to statistical aspects of the covariance matrix such as anisotropy, flow dependence and baroclinicity (Fisher 2003a, 2003b). The first approach by Hollingsworth and Lonnberg (1986) concerned statistics of innovations, namely observation – minus -background (in short forecasts) and rawinsonde observations. The assumption made was that observation errors are spatially uncorrelated and they assigned spatial correlations of innovations to the background error. Hidden in this method of use of innovation statistics is the implicit assumption of a dense homogeneous observing network.

For 3-D VAR the most popular and universally adopted method does not depend on measurements but rather uses differences between forecasts of different time-lengths which verify at the same time. It is known as the “NMC” (now NCEP) method having been introduced by Parrish and Derber (1992). In an operational numerical weather prediction they use

$$B \approx \alpha E\left\{ [X_f(48h) - X_f(24h)] [X_f(48h) - X_f(24h)]^T \right\}$$

(33)

This provides a multivariate global forecast difference covariance. If this time interval is longer than the forecast used to generate background fields then the covariances of the forecast difference will be broader than those of the background error.

A new method based on ensemble of analyses to estimate the background errors is described in detail in Fisher (2003a, 2003b) who presents also modern approaches to background error covariance matrix construction.

10 Framework of Variational Data Assimilation

The objective of variational 4-D Var is to find the solution to a numerical forecast model that best fits a series of observational fields distributed in space over a finite time interval. We are assuming that the model of the atmosphere can be written as

$$B \frac{dX}{dt} + A(X) = 0$$

(34)

with B being identity for a dynamical model or the null operator for a steady state model. A can be a linear or nonlinear operator. We have U defined as a control variable which may consist of initial conditions, boundary conditions and/or model parameters.

U should belong to a class admissible controls U_{ad}. We are looking for a unique solution $X(U)$ of (34). The major step consists in formulating the cost function J which measures distance between model trajectory and observations as well as the background field at initial time during a finite time-interval, referred to as the time window.
Typically in meteorology (see Le Dimet and Talagrand 1986; Rabier 2005).

\[
J(X_0) = \frac{1}{2} (X_0 - X_b)^T B^{-1} (X_0 - X_b) \\
+ \frac{1}{2} \sum_{i=0}^{N} (H_i(X_i) - y_i)^T R_i^{-1} (H_i(X_i) - y_i)
\]

(35)

where

\[
X_0 \text{ is the NWP model state as time } t_0,
\]

\[
X_b \text{-background state at time } t_0, \text{ typically a 6h forecast from a previous analysis},
\]

\[
B \text{-the background error covariance matrix},
\]

\[
y_i \text{-the observation vector at time } t_i,
\]

\[
H_i \text{-observation operator},
\]

\[
X_i = M_{i,0}(X_0) \text{ model state at time } t_i,
\]

\[
R_i \text{-observation error covariance matrix at time } t_i.
\]

where an alternative to writing the NWP model is

\[
X_{i+1} = M_{i+1,i}(X_i)
\]

(36)

\[
M_{i+1,i} \text{ is the nonlinear NWP model from time } t_i \text{ to time } t_{i+1}.
\]

The minimization of the cost functional can be viewed both in the perspective of finding its gradient in (a) Lagrangian approach, (b) adjoint operator approach and (c) a general synthesis of optimality conditions in the framework of optimal control theory approach. Requiring the gradient of the cost to vanish with respect to initial conditions control variable \(X_0\) yields

\[
\nabla_{X_0} J(X_0) = B^{-1} (X_0 - X_b) + \sum_{i=0}^{N} M_{i,0}^T H_i^T R_i^{-1} [H_i(X_i) - y_i]
\]

(37)

where we substitute the dynamical constraint

\[
X_{i+1} = M_{i+1,i}(X_i)
\]

(38)

while perturbations of the atmospheric state are obtained by linearizing the nonlinear model (38) as

\[
\delta X_{i+1} = M_{i+1,i}(X_i) \delta X_i
\]

(39)

yielding

\[
\nabla_{X_0} J(X_0) = B^{-1} (X_0 - X_b) + \sum_{i=0}^{N} M_{i,0}^T H_i^T R_i^{-1} [H_i(X_i) - y_i]
\]

(40)

where \(H_i\) is the tangent linear operator of the observation operator \(H_i\) and \(H_i^T\) is the adjoint operator and
\[M^T_{t,0} = M^T_{1,0}M^T_{2,1} \cdots M^T_{i,t-1} \]

(41)

is the adjoint model consisting of a backward integration from time \(t_i \) to time \(t_0 \).

The minimization of the cost functional is obtained using a gradient-based minimization algorithm. Starting from a first guess

\[X^0(t_0) = X_b(t_0) \]

(42)

while at each iteration step \(k = 1, 2, \cdots, N \), we compute and store both first guess trajectory and the observation departures \(H_i(X_i) - y_i \) by integrating forward in time the nonlinear model

\[X^k(t_i) = M(t_i, t_0)(X^k(t_0)) \]

(43)

Start with initializing the adjoint variable at time \(t_N \)

\[\delta'X^k(t_N) = 0 \]

(44)

integrating the adjoint model backwards in time from final time \(t_N \) to initial time \(t_0 \). and whenever observations are encountered a forcing term

\[H^T_i R_i^{-1}(H_i(X_i) - y_i) \]

(45)

is added to \(\delta'X^k(t_i) \).

Finally one can show that

\[\delta'X^k(t_0) + B[X^k(t_0) - X_b] \]

(46)

is the gradient \(\nabla J^k \) with respect to the control variable \(X^k(t_0) \).

If

\[||\nabla X_b J^{k+1}|| \leq \varepsilon \max\{1, ||X_k||\} \]

(47)

(where \(\varepsilon \) is a predetermined adequately chosen tolerance.) If above criterion is satisfied then stop.

If the above criterion is not satisfied then use a stepsize search algorithm using, say, a cubic interpolation usually provided by the gradient based minimization algorithm.

One then updates the first guess, namely

\[X^{k+1}(t_0) = X^k(t_0) - \rho^k \nabla J^k \]

(48)

where \(\rho \) is a step-size in the direction of descent and find the next minimization iterate using a gradient based minimization algorithm.

All the time we assume that the nonlinear cost function has a unique minimum and avoids temporarily addressing the complex issue of the presence of multiple minima.
11 Variational Formalism

11.1 The Lagrangian Approach

One can consider a model given as in Le Dimet and Talagrand (1986) by

\[F(U) = 0 \] (49)

where \(U \) denotes meteorological fields being considered. Suppose we have observations \(\hat{U} \) occurring at an irregular set of points distributed in both space and time.

We wish to solve the problem of finding a solution that minimizes a cost function

\[J(U) = \int ||U - \hat{U}||^2 \, dx \, dy \, dt \] (50)

where \(||.|| \) is a suitable norm and \(\hat{U} \) consists of discrete observations hence the integral is replaced by suitable finite sums. Here we view the model equation

\[F(U) = 0 \] (51)

as a strong constraint on cost function \(J \). Using classical Lagrange multiplier technique a Lagrangian of (50) subject to model strong constraint allows us to convert this constrained minimization into an unconstrained minimization problem by defining a Lagrangian (see Bertsekas 1982) as

\[L(U, \lambda) = J(U) + (\lambda, F(U)) \] (52)

for an adequately defined inner product for a functional space in which \(F(U) \) also belongs.

Then finding minima of \(J(U) \) subject to

\[F(U) = 0 \] (53)

is equivalent to finding the minima of

\[\nabla_{\lambda} L = 0 \quad \text{and} \quad \nabla_{U} L = 0 \] (54)

which taking into account boundary conditions turns out to be the Euler-Lagrange equations of the problem. Since the Euler-Lagrange equations can seldom be solved directly, we are interested in practical algorithms for solving the minimization of cost functional subject to strong model constraint by transforming it into a sequence of unconstrained minimization problems.

There are many constrained minimization algorithms—but the simplest and most robust of them are the penalty and the multiplier (or duality) algorithms. These are presented in many numerical minimization text books, (Nash and Sofer 1996;

In the augmented Lagrangian algorithm (where the constrained problem is converted into a sequence of unconstrained minimization problems) we have

\[L(\rho, U, \lambda) = J(U) + \{\lambda, F(U)\} + \rho |F(U)|^2 \]

(56)

This algorithm was initially proposed by Hestenes (1969) and independently by Powell (1969). Here \(\rho > 0 \) is the quadratic penalty coefficient.

12 Optimal Control View Point

In optimal control of partial differential equations developed by Lions (1968, 1971) the Lagrange multiplier is viewed as an adjoint variable. The adjoint method of optimal control allows computing the gradient of a cost \(J \) with respect to the control variables.

Consider as in Gunzburger (2003) a second order nonlinear elliptic PDE

\[-\nabla (a \nabla \phi) + b \cdot \nabla \phi + \phi^3 = \sum_{k=1}^{K} \alpha_k f_K \]

(57)

in domain \(\Omega \) with boundary conditions

\[\phi = 0 \text{ on } \Gamma \]

(58)

\(a, b \) and \(f_K \) are given functions defined on \(\Omega \).

We define a cost as

\[J(\phi, \alpha_1, \cdots, \alpha_K) = \frac{1}{2} \int_{\Omega} (\phi - \Phi)^2 d\Omega + \frac{\sigma}{2} \sum_{k=1}^{K} (\alpha_k)^2 \]

(59)

\(\Phi \) is a given function and \(\sigma \) a penalty parameter. We introduce a Lagrange multiplier (here adjoint variable) \(\zeta \) and define a Lagrangian

\[L(\phi, g, \zeta) = J(\phi, g) - \zeta^T F(\phi, g) \]

(60)

We aim to find controls \(g \), states \(\phi \) and adjoint states \(\zeta \) such that the Lagrangian is stationary and we obtain as in the Augmented Lagrangian approach

\[\frac{\partial L}{\partial \zeta} = 0, \text{ constraint} \]

(61)

\[\frac{\partial L}{\partial \phi} = 0, \text{ adjoint equation} \]

(62)

\[\frac{\partial L}{\partial g} = 0, \text{ optimality condition} \]

(63)
Taking a first order variation of L with respect to the Lagrange multiplier, we obtain a variation in the state yielding an optimality condition

$$\left(\frac{\partial F}{\partial \phi} \bigg|_{(\phi,g)} \right)^T \zeta = \left(\frac{\partial J}{\partial \phi} \bigg|_{(\phi,g)} \right)^T$$

(64)

which yields the optimality condition.

13 Situation of Data Assimilation—the Early Period (1980–1987) of 4-D Var

Efforts in early adjoint applications following Francois Le Dimet (1981) pioneering technical report were by Lewis and Derber (1985) and Le Dimet and Talagrand (1986) as well as Courtier (1985). These research efforts started the meteorological optimal control application called “adjoint operator” approach.

Work of Navon and De Villiers (1983) on augmented Lagrangian methods is related to the same topic and is referred to in the early work of Le Dimet and Talagrand (1986).

John Lewis and John Derber (1985) were the first authors to present application of adjoint method, having read the report of Francois Le Dimet (1982) and inspired by earlier work of Thompson (1969). Lorenc (1986) presented a detailed account of state of theory in data assimilation for that period. See also Navon (1986).

It became soon apparent that size and complexity of atmospheric equations is such that enormous computational resources were required—limiting applications of 4-D VAR to undergo drastic approximations for actual operational forecast circumstances.

Penenko and Obratsov (1976) used adjoint data assimilation to perform simple experiments on a linear model (see Talagrand and Courtier 1987), while Derber (1985) used it in his Ph.D thesis to adjust analysis to a multi-level quasi-geostrophic model.

Hoffmann (1986) was the next to use 4-D VAR (even though he used a simplified primitive equation model and in order to estimate the gradient he perturbed in turn all the components of the initial state.)

Talagrand and Courtier (1987) presented a more in-depth general exposition of the theory of adjoint equations in the framework of variational assimilation and applied it to the inviscid vorticity equation and to the Haurwitz wave. Their results are presented in Courtier and Talagrand (1987).

14 OI, 3-D VAR and PSAS

Lorenc (1986) showed that the optimal weight matrix W that minimizes the matrix of analysis error covariance solution may be posed in terms of a variational assimilation problem, namely that of finding the optimal analysis field X_a that minimizes a
cost function. The cost function measures the distance between the field variables X and the background X_b (the background term of the cost) plus another term, namely the distance to the observations y^o weighted by the inverse of the observation error covariance matrix R

$$J(X) = \frac{1}{2} (X - X_b)^T B^{-1} (X - X_b) + [y^o - H(X)]^T R^{-1} [y^o - H(X)]$$

(65)

where H is the forward observational operator. The cost function (97) can also be derived based on a Bayesian approach.

A formalism allowing viewing the assimilation algorithms of O-I, 3-D VAR, PSAS and 4-D VAR as a sequence of corrections to a model state can be derived from the work of Lorenc (1986), Kalnay (2003) and Courtier (1997). See also research work of Da Silva et al. (1995) who first proposed the physical space statistical analysis system (PSAS) (see also report of Aarnes 2004).

We are considering incrementing background model state X_b with additional information from the observation z where

$$X_a = X_b + K(z - HX_b).$$

(66)

Here H is an observation operator mapping the model state on space and time locations of the observation, X_a is the analysis and K is the gain matrix weighting the contributions from the new information according to the reliability of the observation relative to respective reliability of the model state. Following Kalnay (2003), Lorenc (1986) OI, 3-D VAR, 4-D VAR and PSAS are mathematically equivalent but 3-D VAR and related PSAS have the advantage w.r.t. OI by virtue of the fact that one can minimize the cost function J with global unconstrained minimization algorithms for 3-D VAR hence all the approximation made in OI are not necessary. Other advantages of 3-D VAR are enumerated in Kalnay (2003).

To see the equivalence between OI and the PSAS scheme where minimization is performed in the space of observations rather than in the model space (Since the number of observation is usually much smaller than the dimension of model space-PSAS may turn out to be more efficient than 3-D VAR for obtaining similar results) we note that
\[
\begin{pmatrix}
R & H \\
HT & -B^{-1}
\end{pmatrix}
\begin{pmatrix}
W \\
Xa-Xb
\end{pmatrix} = \begin{pmatrix}
z-HXb \\
0
\end{pmatrix}
\]

(69)

is equivalent to

\[
\begin{pmatrix}
W \\
HT \\
0 \\
-B^{-1}
\end{pmatrix}
\begin{pmatrix}
W \\
Xa-Xb
\end{pmatrix} = \begin{pmatrix}
z-HXb \\
0
\end{pmatrix}
\]

(70)

yielding

\[
w = W^{-1}(z-HXb)
\]

(71)

and

\[
Xa-Xb = BH^TW^{-1}
\]

(72)

One first solves the linear system

\[
Ww = z-HXb
\]

(73)

and then interpolates solution onto model space as

\[
Xa = Xb + BH^Tw
\]

(74)

In PSAS one solves the first step by minimizing the cost functional

\[
J(w) = \frac{1}{2}w^TWw - w^T(Z-HXb)
\]

(75)

thus allowing a better conditioning of the minimization due to smaller dimension of \(W\) i.e.

\[
\text{dim}(W) \leq \text{dim}(B)
\]

(76)

Courtier (1997) has shown that there is a duality between 3-D VAR and the physical space statistical analysis system (PSAS). He also showed that the temporal extension of 3-D VAR leads to 4-D VAR while the temporal extension of PSAS, 4-D VAR PSAS is achieved using an algorithm related to the representer technique (Bennett 2002), which is a practical algorithm for decoupling the Euler-Lagrange equations associated with the variational problem with weak constraint. (see Amodei 1995)

15 4-D VAR Developments in Early 1990s

A comprehensive list of adjoint applications to meteorological problem is provided by Courtier et al. (1993). The early 1990s were characterized by publication of many research efforts related to extending 4-D VAR data assimilation to multilevel
primitive-equation models using analyses as observations along with other work using synthetic observations. See for instance Thepaut and Courtier (1991), Navon et al. (1992a) and Zupanski (1993). Thepaut et al. (1993) used real observations while Rabier and Courtier (1992) studied the performance of 4-D VAR in the presence of baroclinic instability. Courtier et al. (1994) introduced an incremental formulation of the 4-D VAR, a major achievement allowing the 4-D VAR method to become computationally feasible on that period’s computers.

It was perceived rather early by Derber (1989) that the perfect model hypothesis is a weakness of 4-D VAR. In the above seminal paper he assumed the model error to be fully correlated in time and solved the problem by including the bias in the control variable. Wergen (1992) and Miller et al. (1994) illustrated how serious the problem is.

At universities research in 4-D VAR data assimilation proceeded to address issues such as the impact of incomplete observations on 4-DVAR (see Zou et al. 1992), while at the suggestion and advice of Francois Le Dimet, Zhi Wang completed a doctoral thesis on second order adjoint methods (Wang 1993), as well as a first paper on second order adjoint data assimilation (Wang et al. 1995). Initial work on 4-D VAR data assimilation with the semi-implicit semi Lagrangian (SLSI) models in 2-D and 3-D was using both shallow-water and a NASA multilevel model. (see Li et al. 1993, 1994, Li and Droegemeier 1993) Basic work on optimization methods suitable for 4-D VAR was carried out by Zou et al. (1993) based on Navon (1992) and Navon et al. (1992b). Application of 4-D VAR to a finite-element model of the shallow-water equations was carried out by Zhu et al. (1994) while a novel Hessian preconditioning method based on an idea of Courtier et al. (1994) was written by W. Yang et al. (1996) Aspects of 4-D VAR dealing with boundary conditions as control variables were dealt amongst others in the work of Zou et al. (1995).

16 Model Error in 4-D VAR

Numerical weather prediction (NWP) models are imperfect, since they are discretized, dissipative and dispersion errors arise, and, moreover subgrid processes are not included. In addition, most of the physical processes and their interactions in the atmosphere are parameterized and a complete mathematical modeling of the boundary conditions and forcing terms can never be achieved. Usually all of these modeling drawbacks are collectively addressed by the term model error (ME). The model equations do not represent the system behavior exactly and model errors arise due to lack of resolution as well as inaccuracies occurring in physical parameters, boundary conditions and forcing terms. Errors also occur due to numerical discrete approximations. A way to take these errors into account is to use the weak constraint 4D-Var.

Variational data assimilation is based on the minimization of:

$$J(x) = [H(x) - y]^T R^{-1} [H(x) - y] + (x_0 - x_b)^T B^{-1} (x_0 - x_b) + \Phi(x)^T C^{-1} \Phi(x)$$ \hfill (77)
Here \(\mathbf{x}\) is the 4D state of the atmosphere over the assimilation window, \(H\) is a 4D observation operator, accounting for the time dimension. \(\Phi\) represents remaining theoretical knowledge after background information has been accounted for (such as balance relations or digital filtering initialization introduced by Lynch and Huang (1992)). One can see that model \(M\) verified exactly although it is not perfect.

16.1 Weak Constraint 4D-Var

The model can be imposed as a constraint in the cost function, in the same way as other sources of information:

\[
\Phi_i(\mathbf{x}) = \mathbf{x}_i - \mathbf{M}_{i-1}
\]

(78)

Model error \(\eta\) is defined as: \(\eta_i(\mathbf{x}) = \mathbf{x}_i - \mathbf{M}_{i-1}\).

The cost function becomes:

\[
J(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{n} (H(\mathbf{x}_i) - y_i)^T R_i^{-1} (H(\mathbf{x}_i) - y_i) + \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_b)^T B^{-1} (\mathbf{x}_0 - \mathbf{x}_b) + \frac{1}{2} \sum_{i=1}^{n} \eta_i^T Q_i^{-1} \eta_i
\]

(79)

Another issue requiring attention is that model error covariance matrix \(Q\) has to be defined. Strong constraint 4D-Var is obtained when \(\Phi_i(\mathbf{x}) = 0\) i.e. \(\eta = 0\) (perfect model).

Studies indicate that model error (ME) can severely impact forecast errors, see for instance Boer (1984), Dalcher and Kalnay (1987), Bloom and Shubert (1990) and Zupanski (1993).

For early methods on estimating modeling errors in operational NWP models see Thibaux and Morone (1990) and Saha (1992). Thus giving up the assumption that the model is perfect, in the context of strong constraint VDA leads us to weak constraint formulation of VDA, and if we include time evolution of the variables, we could say we have a weak constraint 4D-Var (time plus three space dimensions).

Comparing the strong and weak constraint VDA, in the formulation of former, it is assumed that \(\eta\) has mean and model error covariance matrix \(Q = E(\eta(t)\eta^T(t')) = 0, \forall t\) and \(t'\) and model error covariance matrix, \(E[\cdot]\) is the mathematical expectation operator. It should be noted that if the mean and (co)variance of a random vector are prescribed to be equal to zero, then all realizations of that random vector are identically equal to zero, thus, \(\eta \equiv 0\). In the weak constraint version of VDA, the mean and covariance of ME have to be specified. However exact statistical details of ME are difficult to obtain (Daley 1992a, b; Dee and Da Silva 1998; Zhu and Kamachi 2000) a fact which led researchers to suggest a variety of assumptions to approximate and parameterize the ME.

Early efforts to model the systematic component of ME were pioneered by Derber (1989). He suggested a simplified approach to model \(\eta\) to be equal to \(\lambda(t)\phi\).
The temporal part, \(\lambda(t) \) is a specified function of time alone, while \(\phi \) is a spatially dependent, control variable. Three different forms of \(\lambda \) were considered, namely, parabolic, delta function and constant in time. It was observed that the parabolic variation of \(\lambda \) provided results comparable to a constant in time \(\lambda \). Using a similar approach (Wergen 1992; Zupanski 1997) it was shown that inclusion of ME allowed significant reduction in forecast RMSE.

For dynamically evolving systems such as discrete NWP models, ME is expected to depend on the model state and should be evolving in time (Griffith and Nichols 1996, 2000). Various simple forms of evolution of ME in time were considered by Griffith and Nichols (2000), Nichols (2003). At any time step, \(t_k \), the evolution of ME is

\[
\eta_k = T_k(e_k) + q_k
\]

where \(T_k \) describes the distribution of systematic errors in the NWP model equations, and \(q_k \), (stochastic component) is an unbiased, serially correlated, normally distributed random vector, with known covariance. The evolution of \(e_k \), is in-turn modeled by assuming that it depends on the state vector, \(x_k \)

\[
e_{k+1} = g_k(x_k, e_k)
\]

16.2 Systematic Model Error and State Augmentation

In order to take into account systematic components in the model errors, we assume that the evolution of the errors is described by the equations

\[
\eta_k = T_k(e_k) + q_k
\]
\[
e_{k+1} = g_k(x_k, e_k)
\]

where \(q_k \in \mathbb{R}^n \) is unbiased, serially uncorrelated, normally distributed random vectors with known covariance matrices and the vectors \(e_k \in \mathbb{R}^r \) represent time-varying systematic components of the model errors. The distribution of the systematic errors in the model equations is defined by the function \(T_k : \mathbb{R}^r \rightarrow \mathbb{R}^n \). The functions \(g_k : \mathbb{R}^n \times \mathbb{R}^r \rightarrow \mathbb{R}^r \) describing the systematic error dynamics are to be specified.

In practice little known about the form of the model errors and a simple form for the error evolution that reflects any available knowledge needs to be prescribed. Examples of simple forms of the error evolution includes:

constant bias error: \(e_{k+1} = e_k, T_k = I \).

This choice allows for a constant vector \(e = e_0 \) of unknown parameters to be found, which can be interpreted as statistical biases in the model errors. This form is expected to be appropriate for representing the average errors in source terms or in boundary conditions.
Evolving error: \(e_{k+1} = F_k e_k, T_k = I \).

Here \(F_k \in \mathbb{R}^{n \times n} \) represents a simplified linear model of the state evolution. This choice is appropriate, for example, for representing discretization error in models that approximate continuous dynamical processes by discrete time systems.

Spectral form: \(e_{k+1} = e_k, T_k = (I, \sin(k/N\tau)I, \cos(k/N\tau)I) \).

In this case the constant vector \(e \equiv e_0 \) is partitioned into three components vectors, \(e^T = (e_1^T, e_2^T, e_3^T) \) and \(\tau \) is a constant determined by the timescale on which the model errors are expected to vary, for example, a diurnal timescale. The choice approximates the first order terms in a spectral expansion of the model error.

The weak constraint VDA doubles the size of the optimization problem (compared to strong constraint VDA), in addition if the stochastic component is included in the ME formulation, then one would have to save every random realization at each model time step, which amounts to tripling the size of the optimization problem. The computational results in Griffith et al. (2000) were provided by neglecting \(q_k \), the stochastic component of ME and using the constant and evolving forms of the systematic component, see Griffith et al. (2000) for additional details. Similar approaches for modeling the systematic component of ME was considered by Martin et al. (2001) and reduction of ME control vector size by projecting it on to the subspace of eigenvectors corresponding to the leading eigenvalues of the adjoint-tangent linear operators was illustrated by Vidard et al. (2000).

Other choices can be prescribed, including piecewise constant error and linearly growing error (see Griffith 1997; Griffith et al. 2000; Martin et al. 2001). These techniques have been applied successfully in practice to estimate systematic errors in an equatorial ocean model (Martin et al. 2001) ZuPanski et al. (2005) provided results obtained using the NCEP’s regional weather prediction system in weak constraint VDA framework. Akella and Navon (2007) studied in depth the nature of modeling errors and suggested a decreasing, constant and increasing in time forms of ME. Implementation of these forms in a weak constraint VDA framework yielded a further reduction in forecast errors.

When the number of observations is considerably smaller, the method of representers (Bennett 2002) provides a computationally efficient (in storage/ space requirements) formulation of VDA. Incorporation of ME in such framework was shown by Uboldi and Kamachi (2000).

Very little is known with certainty about ME spatio-temporal structure since MEs are not observable, contrary to forecast errors. The common practice is to assume that MEs are white. Daley (1992a) suggested use of a first order (in time) linear model for MEs. That approach was implemented by ZuPanski (1997) in its simplest form; the inevitable simplicity is due to the absence of empirical estimates of parameters and even structural features of the ME model. DelSole and Hou (1999) considered the state-dependent part of ME and proposed a respective estimator.

Mitchell and Daley (1997) considered the discretization part of ME and its effect on data assimilation. Menemenlis and Chechelnitsky (2000) estimated the spatial structure of an ME white-noise model for an ocean circulation model. ME models rely on hypotheses that have never been checked namely the applicability of a
stochastic model driven by an additive (and not, say, multiplicative) noise, Gaussianity of ME, the white-noise or red-noise hypotheses. Tools needed to use the information on ME (Tsyrulnikov 2005) structure in meteorology and oceanography are available such as ensemble forecasting, weak-constraint four-dimensional variational assimilation (4D-Var, e.g. Zupanski 1997; Xu et al. 2005), and Kalman filtering (e.g. Cohn 1997). Empirical approaches have been used only in ensemble techniques but cannot be used in the weak-constraint 4D-Var, where one must specify an ME spatio-temporal stochastic model.

17 Automatic Differentiation

Automatic differentiation (AD) is a set to techniques based on the mechanical application of the chain rule to obtain derivatives of a function given as a computer program adjoint equations resulting from differentiation the discretized model equation can be obtained.

Automatic differentiation exploits fact that a computer code executes a sequence of elementary arithmetic operations consisting of additions or elementary functions.

By applying the chain rule derivative repeatedly to these operations derivatives of any order can be computed automatically. Other classical methods to achieve the same goal are available but with inherent shortcomings are symbolic differentiation or use of finite-differences.

Symbolic differentiation is slow, while finite differences suffer from round-off errors in the discretization process and cancellations.

Automatic differentiation has the advantage of solving these problems.

There are essentially two modes of AD, namely forward accumulation and reverse accumulation. Forward accumulation is less useful for data assimilation while reverse accumulation allows efficient calculation of gradients.

The first powerful general purpose AD systems was developed at Oak Ridge National Laboratory (Oblow 1983), later endowed with the adjoint variant ADGEN for reverse AD by Pin et al. (1987). Later ADIFOR (Bischof et al. 1992) was developed at Argonne National Laboratory, Odyssee was developed at INRIA and TMC by Giering and Kaminski (1997). In France the TAPENADE code is used (see Hascoet and Pascual 2004). There are many more automatic differentiation languages. Earlier books on AD are by Rall (1981) and Kagiwada et al. (1986). See also Navon and Zou (1991).

Checkpointing is a general trade-off technique, used in the reverse mode of AD that trades duplicate execution of a part of the program in order to save memory space employed to save intermediate results. Checkpointing a code fragment amounts to running this fragment without storage of intermediate values, thus saving memory space. At a later stage, when the intermediate value is required, the fragment is run a second time to obtain the required values.

Results and application studies of automatic differentiation have been published in proceedings of the international workshop on automatic differentiation held in Breckenridge (See Griewank and Corliss 1991). The most comprehensive book and
work is that of Andreas Griewank (2000). See also Berz et al. (1996) and Griewank and Corliss (1991).

18 Second Order Adjoint Methods

Behind most of the methods used in meteorology such as: optimal interpolation, variational methods, statistical estimation etc., there is a variational principle, i.e. the retrieved fields are obtained through minimization of a functional depending on the various sources of information. The retrieved fields are obtained through some optimality condition which can be an Euler or Euler-Lagrange condition if regularity conditions are satisfied. Since these conditions are first order conditions, it follows that they involve the first order derivatives of the functional which is minimized. In this sense, data assimilation techniques are first order methods. But first order methods provide only necessary conditions for optimality but not sufficient ones. Sufficient conditions require second order information. By the same token, from the mathematical point of view sensitivity studies with respect to some parameter can be obtained through Gateaux derivatives with respect to this parameter. Therefore if we seek the sensitivity of fields which have already been defined through some first order conditions we will have to go to an order of derivation higher and in this sense sensitivity studies require second order information.

A comprehensive review paper on second order adjoint methods was written by Le Dimet et al. (2002) considering all aspects of second order adjoint methods.

19 Computing the Second Order Information

In what follows we follow closely the presentation in Le Dimet et al. (2002). In general we will assume that the model has the general form:

$$F(X, U) = 0$$ \hspace{1cm} (84)
where X, the state variable, describes the state of the environment, U is the input of the model, i.e. an initial condition which has to be provided to the model to obtain from Eq. (84) a unique solution $X(U)$. We will assume that X and U belong to a space equipped with an inner product.

The closure of the model is obtained through a variational principle which can be considered as the minimization of some functional:

$$ J(X, U) $$

(85)

For instance, in the case of variational data assimilation, J may be viewed as representing the cost function measuring the discrepancy between the observation and the solution associated with the value U of the input parameter. Therefore the optimal input for the model will minimize J.

19.1 First Order Necessary Conditions

If the optimal U minimizes J, then it satisfies the Euler equations given by

$$ \nabla J(U) = 0 $$

(86)

where ∇J is the gradient of J with respect to control variables.

The gradient of J is obtained in the following way:

(i) we compute the Gateaux (directional) derivative of the model and of F in some direction u. We may write

$$ \frac{\partial F}{\partial X} \times \dot{X} + \frac{\partial F}{\partial U} \times u = 0 $$

(87)

where $\langle \cdot \rangle$ stands for the Gâteaux derivative. Let Z be an application from R^n into R^n with variable U. We define the Gâteaux derivative of Z in the direction u when this limit exists. For a generic function Z it is given by:

$$ \dot{Z}(U, u) = \lim_{\alpha \rightarrow 0} \frac{Z(U + \alpha u) - Z(U)}{\alpha} $$

(88)

If $\dot{Z}(U, u)$ is linear in u we can write

$$ \dot{Z}(U, u) = \langle \nabla Z(U), u \rangle $$

(89)

where ∇Z is the gradient of Z with respect to U. The Gateaux derivative is also called a directional derivative. Here $\frac{\partial F}{\partial X}$ (or $\frac{\partial F}{\partial U}$) is the Jacobian of F with respect to X (or U)) and

$$ \dot{J}(X, U, u) = \langle \frac{\partial J}{\partial X}, \dot{X} \rangle + \langle \frac{\partial J}{\partial U}, u \rangle $$

(90)

where $\langle \cdot \rangle$ stands for the inner product.
The gradient of J is obtained by exhibiting the linear dependence of \hat{J} with respect to u. This is done by introducing the adjoint variable P (to be defined later according to convenience).

Taking the inner product between (87) and P yields

$$<\frac{\partial F}{\partial \mathbf{X}} \times \hat{\mathbf{X}}, P> + <\frac{\partial F}{\partial \mathbf{U}} \times \mathbf{u}, P> = 0$$

(91)

$$<\left(\frac{\partial F}{\partial \mathbf{X}}\right)^T \times P, \hat{\mathbf{X}}> + <\left(\frac{\partial F}{\partial \mathbf{U}}\right)^T \times \mathbf{u}, \mathbf{u} > = 0$$

(92)

Therefore using (90), if P is defined as the solution of the adjoint model

$$\left(\frac{\partial F}{\partial \mathbf{X}}\right)^T \times \mathbf{P} \left(\frac{\partial J}{\partial \mathbf{X}}\right) = \left(\frac{\partial J}{\partial \mathbf{X}}\right) \times \mathbf{P}$$

(93)

then we obtain

$$\nabla J(\mathbf{U}) = \left(\frac{\partial F}{\partial \mathbf{U}}\right)^T \times \mathbf{P} + \frac{\partial J}{\partial \mathbf{U}}$$

(94)

Therefore the gradient is computed by solving Eq. (93) to obtain \mathbf{P}, then by applying Eq. (94).

19.2 Second Order Adjoint

To obtain second order information we look for the product of the Hessian $G(\mathbf{U})$ of J with some vector \mathbf{u}. As before we apply a perturbation to Eqs. (84), (93), and from Eq. (93) and (94) we obtain

$$\left(\frac{\partial^2 F}{\partial \mathbf{X}^2} \times \hat{\mathbf{X}} + \frac{\partial^2 F}{\partial \mathbf{X} \partial \mathbf{U}} \times \mathbf{u}\right)^T \times \mathbf{P} + \left(\frac{\partial F}{\partial \mathbf{X}}\right)^T \times \hat{\mathbf{P}}$$

(95)

$$\frac{\partial^2 J}{\partial \mathbf{X}^2} \times \hat{\mathbf{X}} + \frac{\partial^2 J}{\partial \mathbf{X} \partial \mathbf{U}} \times \mathbf{u}$$

and

$$\nabla J(\mathbf{U}) = G(\mathbf{U}) \times \mathbf{u} = -\left(\frac{\partial^2 F}{\partial \mathbf{U}^2} \times \mathbf{u} + \frac{\partial^2 F}{\partial \mathbf{U} \partial \mathbf{X}} \times \hat{\mathbf{X}}\right)^T \times \mathbf{P}$$

(96)

$$-\left(\frac{\partial F}{\partial \mathbf{U}}\right)^T \times \hat{\mathbf{P}} + \frac{\partial^2 J}{\partial \mathbf{U}^2} \times \mathbf{u} + \frac{\partial^2 J}{\partial \mathbf{X} \partial \mathbf{U}} \times \hat{\mathbf{X}}$$

We introduce here Q and R, two additional variables. To eliminate $\hat{\mathbf{X}}$ and P, we will take the inner product of Eq. (87) and (95) with Q and R respectively, then add the results. We then obtain
\[
< \hat{\mathbf{x}}, \left(\frac{\partial F}{\partial \mathbf{x}} \right)^T \times \mathbf{Q} > + < \mathbf{u}, \left(\frac{\partial F}{\partial \mathbf{u}} \right)^T \times \mathbf{Q} > + < P, \left(\frac{\partial^2 F}{\partial \mathbf{x} \partial \mathbf{u}} \right) \times \hat{\mathbf{x}} \times \mathbf{R} > \quad (97)
\]

\[
+ < P, \left(\frac{\partial^2 F}{\partial \mathbf{x} \partial \mathbf{u}} \right) \times \mathbf{u} \times \mathbf{R} > + < \hat{\mathbf{p}}, \left(\frac{\partial F}{\partial \mathbf{x}} \right) \times \mathbf{R} >
\]

\[
= < \hat{\mathbf{x}}, \left(\frac{\partial^2 J}{\partial \mathbf{x}^2} \right)^T \times \mathbf{R} > + < \mathbf{u}, \left(\frac{\partial^2 J}{\partial \mathbf{x} \partial \mathbf{u}} \right)^T \times \mathbf{R} >
\]

Let us take the inner product of Eq. (96) with \(\mathbf{u} \), then we may write

\[
< \mathbf{G} (\mathbf{U}) \times \mathbf{u}, \mathbf{u} > = - \left(\frac{\partial^2 F}{\partial \mathbf{u}^2} \times \mathbf{u} + \frac{\partial^2 F}{\partial \mathbf{x} \partial \mathbf{u}} \times \hat{\mathbf{x}} \right)^T \times \mathbf{P}, \mathbf{u} > \quad (98)
\]

\[
+ < \hat{\mathbf{p}}, \left(- \frac{\partial F}{\partial \mathbf{u}} \right) \times \mathbf{u} > < \frac{\partial^2 J}{\partial \mathbf{u}^2} \times \mathbf{u}, \mathbf{u} > + < \hat{\mathbf{x}}, \left(\frac{\partial^2 J}{\partial \mathbf{x} \partial \mathbf{u}} \right)^T \times \mathbf{u} >
\]

From (98) we get

\[
< \hat{\mathbf{x}}, \left(\frac{\partial F}{\partial \mathbf{x}} \right)^T \times \mathbf{Q} > + \left(\frac{\partial^2 F}{\partial \mathbf{x} \partial \mathbf{u}} \times \mathbf{P} \right) \times \mathbf{R} - \frac{\partial^2 J}{\partial \mathbf{x}^2} \times \mathbf{R} > + < \hat{\mathbf{p}}, \frac{\partial F}{\partial \mathbf{x}} \times \mathbf{R} >
\]

\[
= < \mathbf{u}, - \left(\frac{\partial F}{\partial \mathbf{u}} \right)^T \times \mathbf{Q} - \left(\frac{\partial^2 F}{\partial \mathbf{x} \partial \mathbf{u}} \times \mathbf{P} \right)^T \times \mathbf{R} + \frac{\partial^2 J}{\partial \mathbf{x} \partial \mathbf{u}} \times \mathbf{R} > \quad (99)
\]

Therefore if \(\mathbf{Q} \) and \(\mathbf{R} \) are defined as being the solution of

\[
\left(\frac{\partial F}{\partial \mathbf{x}} \right)^T < \mathbf{u}, - \left(\frac{\partial F}{\partial \mathbf{u}} \right)^T \times \mathbf{Q} + \left(\frac{\partial^2 F}{\partial \mathbf{x} \partial \mathbf{u}} \times \mathbf{P} \right)^T \times \mathbf{R} - \frac{\partial^2 J}{\partial \mathbf{x}^2} \times \mathbf{R} >
\]

\[
= \left(\frac{\partial F}{\partial \mathbf{u}} \right)^T \times \mathbf{u} - \left(\frac{\partial^2 F}{\partial \mathbf{u} \partial \mathbf{u}} \times \mathbf{u} \right) \times \mathbf{P}
\]

\[
\left(\frac{\partial F}{\partial \mathbf{x}} \right)^T \times \mathbf{R} = - \frac{\partial F}{\partial \mathbf{u}} \times \mathbf{u} \quad (100)
\]

then we obtain:

\[
\mathbf{G} (\mathbf{U}) \times \mathbf{u} = - \left(\frac{\partial^2 F}{\partial \mathbf{u}^2} \times \mathbf{u} \right) \times \mathbf{P} + \frac{\partial^2 J}{\partial \mathbf{x}^2} \times \mathbf{u} - \left(\frac{\partial F}{\partial \mathbf{u}} \right)^T \times \mathbf{Q}
\]

\[
- \left(\frac{\partial^2 F}{\partial \mathbf{x} \partial \mathbf{u}} \times \mathbf{P} \right) \times \mathbf{R} + \frac{\partial^2 J}{\partial \mathbf{x} \partial \mathbf{u}} \times \mathbf{R} \quad (102)
\]

For Eqs. (93), (94), (95), (96), (97) and (98) we took into account the symmetry of the matrix of second derivative, e.g.

\[
\frac{\partial^2 F}{\partial \mathbf{x}^2} = \left(\frac{\partial^2 F}{\partial \mathbf{x}^2} \right)^T \quad (103)
\]
leading to some simplifications. The system (99) will be called the second order adjoint. Therefore we can obtain the product of the Hessian by a vector \(u \) by (i) solving the system (99), (ii) applying formula (102).

19.3 Remarks

(a) The system (99) which has to be solved to obtain the Hessian/vector product can be derived from the Gateaux derivative (99) which is the same as (101). In the literature, the system (99) is often called the tangent linear model, this denomination being rather inappropriate because it implies the issue of linearization and the subsequent notion of range of validity which is not relevant in the case of a derivative.

(b) In the case of an \(N \)-finite dimensional space the Hessian can be fully computed after \(N \) integrations of vector of the canonical base. Equation (99) differs from the adjoint model by the forcing terms which will depend on \(u \) and \(R \).

(c) The system (99), (100), (101) and (102) will yield the exact value of the Hessian/vector product. An approximation could be obtained by using the standard finite differences, i.e.,

\[
G(U) \times u \approx \frac{1}{\alpha} \left[\nabla J(U + \alpha u) - \nabla J(U) \right]
\]

(104)

where \(\alpha \) is the finite-difference interval which has to be carefully chosen. In the incremental 3/4D-Var approach the Hessian/vector product can readily be obtained by differencing two gradients.

However several integrations of the model and of its adjoint model will be necessary in this case to determine the range of validity of the finite-difference approximation (Wang et al. (1995) and references therein).

19.4 Time Dependent Model

In the case of variational data assimilation the model \(F \) is a differential system on the time interval \([0, T]\). The evolution of \(X \in H[C(0, T)]^n \) between 0 and \(T \) is governed by the differential system,

\[
\frac{\partial X}{\partial t} = F(X) + B \times V
\]

(105)

The input variable is often the initial condition,

\[
X(0) = U \in \mathbb{R}^n
\]

(106)

In this system \(F \) is a nonlinear operator which describes the dynamics of the model, \(V \in V[C(0, T)]^m \) is a term used to represent the uncertainties of the model.
which we assume to be linearly coupled through the \((m, n)\)-dimensional matrix \(B\). \(U\) is the initial condition, and the criteria \(J\) is the discrepancy between the solution of Eqs. (105) and (106) and observations

\[
J(U, V) = \frac{1}{2} \int_0^T ||HX - X_{obs}||^2 dt
\]

where \(H\) is the observation matrix, i.e., a linear operator mapping \(X\) into \(X_{obs}\). The problem consists in determining \(U\) and \(V\) that minimize \(J\).

A perturbation \(v\) on \(V\) and \(u\) on \(U\) gives \(\hat{X}\) and \(\hat{J}\) the Gateaux derivatives of \(X\) and \(J\) as solution of

\[
\frac{d\hat{X}}{dt} = \frac{\partial F}{\partial X} \times \hat{X} + B \times V
\]

\(\hat{X}(0) = u\) \hspace{1cm} (108)

\[
\hat{J}(U, V, u, v) = \frac{1}{2} \int_0^T <HX - X_{obs}, H\hat{X}> dt
\]

\(\hat{J}(U, V, u, v)\) \hspace{1cm} (110)

Let us introduce \(P\) the adjoint variable, we take the product of (108) with \(P\) after a summation on the interval \([0, T]\) and an integration by parts followed by identification of linearities with respect to \(U\) and \(V\) in (110), we conclude that of \(P\) is defined as the solution of

\[
\frac{dP}{dt} = \frac{\partial F^T}{\partial X} \times P + H^T H (X - X_{obs})
\]

\(P(T) = 0\) \hspace{1cm} (111)

and the components of the gradient \(\nabla J\) with respect to \(U\) and \(V\) are

\[
\nabla J_U = -P(0)
\]

\(\nabla J_V = -B^T P\) \hspace{1cm} (113)

\(V\) is time dependent, its associated adjoint variable \(Q\) will be also time dependent. Let us remark that the gradient of \(J\) with respect to \(V\) will depend on time. From a computational point of view the discretization of \(V\) will have to be carried out in such a way that the discretized variable remains in a space of “reasonable” dimension.

The second derivative will be derived after a perturbation \(h\) on the control variables \(U\) and \(V\)

\[
h = \begin{pmatrix} h_U \\ h_V \end{pmatrix}
\]

The Gateaux derivatives \(\hat{X}, P\) of \(X\) and \(P\) in the direction of \(h\), are obtained as the solution of the coupled system
\[
\frac{d\hat{X}}{dt} = \frac{\partial F}{\partial X} \hat{X} + B h_V \tag{116}
\]
\[
\hat{X}(0) = h_U \tag{117}
\]
\[
\frac{d\hat{P}}{dt} + \left(\frac{\partial^2 F}{\partial X^2} \times \hat{X} \right)^T \times P + \left(\frac{\partial F}{\partial X} \right)^T \times P = H^T H \hat{X} \tag{118}
\]
\[
\nabla J_U = -\hat{P}(0) \tag{119}
\]
\[
\nabla J_V = -B^T \hat{P} \tag{120}
\]

We introduce \(Q \) and \(R \), second order adjoint variables. They will be defined later for ease of use of presentations.

Taking the inner product of (116) with \(Q \) and of (118) with \(R \), integrating from 0 to \(T \), then adding the resulting equations, we may write:

\[
\int_0^T \begin{bmatrix} < \frac{d\hat{X}}{dt}, Q > - < \frac{\partial F}{\partial X} \times \hat{X}, Q > - < B h_V, Q > + < \frac{d\hat{P}}{dt}, R > \\
+ < \left[\frac{\partial^2 F}{\partial X^2} \times \hat{X} \right]^T \times P, R > + < \left[\frac{\partial F}{\partial X} \right]^T \hat{P}, R > - < H^T H \hat{X}, R > \end{bmatrix} dt = 0 \tag{121}
\]

The terms in \(\hat{P} \) and \(\hat{X} \) are collected and after integration by parts and some additional transformations we obtain

\[
\int_0^T < \check{X}, \frac{dQ}{dt} > - \left[\frac{\partial F}{\partial X} \right]^T \times Q + \left[\frac{\partial^2 F}{\partial X^2} \times P \right]^T \times R - H^T H R > dt \tag{122}
\]
\[
+ \int_0^T < \check{P}, \frac{dR}{dt} > + \left(\frac{\partial F}{\partial X} \right) \times R > dt - \int_0^T < h_U, B^T \times Q > dt
\]
\[
+ < \check{X}(T), Q(T) > - < \check{X}(0), Q(0) > + < \check{P}(T), R(T) >
\]
\[
- < \check{P}(0), R(0) > = 0
\]

Let \(G \) be the Hessian matrix of the cost \(J \). We have

\[
G = \begin{pmatrix} G_{UU} & G_{UV} \\ G_{VU} & G_{VV} \end{pmatrix} \tag{123}
\]

Therefore if we define the second order adjoint as being the solution of

\[
\frac{dQ}{dt} + \left[\frac{\partial F}{\partial X} \right]^T \times Q = \left[\frac{\partial^2 F}{\partial X^2} P \right]^T \times R - H^T H R \tag{124}
\]
\[
\frac{dR}{dt} = \left[\frac{\partial F}{\partial X} \right] \times R \tag{125}
\]
and

\[Q(T) = 0 \] (126)
\[R(0) = h_U \] (127)

then we finally obtain

\[\langle -h_U, Q(0) \rangle = \langle \hat{P}(0), R(0) \rangle \] (128)
\[\hat{P}(0) = -Q(0) \] (129)

We would like to point out that Eq. (129) follows directly from Eq. (128) by using Eq. (127). The product of the Hessian by a vector \(r \) is obtained exactly by a direct integration of (125) and (127) followed by a backward integration in time of (124) and (126).

One can obtain \(G \) by \(n \) integrations of the differential system:

\[\frac{dQ}{dt} + \left[\frac{\partial F}{\partial X} \right]^T \times Q = \left[\frac{\partial^2 F}{\partial X^2} \times P \right]^T \times R - H^T H R \] (130)
\[\frac{dR}{dt} = \left[\frac{\partial F}{\partial X} \right] R \] (131)

with the conditions

\[Q(T) = 0 \] (132)
\[R(0) = e_i \] (133)

where \(e_i \) are the \(n \)-vectors of \(R^n \) the canonical base of thus obtaining

\[G_{UU} e_i = Q(0) \] (134)
\[G_{UV} e_i = B^T \times Q \] (135)

One then integrates \(m \) times the differential system

\[\frac{dQ}{dt} + \left[\frac{\partial F}{\partial X} \right]^T \times Q = \left[\frac{\partial^2 F}{\partial X^2} \times P \right]^T \times R - H^T H R \] (136)
\[\frac{dR}{dt} - \left[\frac{\partial F}{\partial X} \right] \times R = f_j \] (137)

with initial and terminal conditions

\[Q(T) = 0 \] (138)
\[R(0) = 0 \] (139)

where \(f_j \) are the \(m \) canonical base vectors of \(R^m \) obtaining
The system defined by these equations is the second order adjoint model. The Hessian matrix is obtained via $n + m$ integrations of the second order adjoint. The second order adjoint is easily obtained from the first order adjoint – differing from it only by some forcing terms, in particular the second order term. The second equation is that of the linearized model (the tangent linear model).

One can also obtain the product of a vector of the control space, times the Hessian at cost of a single integration of the second order adjoint.

19.5 Use of Hessian of Cost Functional to Estimate Error Covariance Matrices

A relationship exists between the inverse Hessian matrix and the analysis error covariance matrix of either 3-D VAR or 4-D VAR (See Thacker 1989; Rabier and Courtier 1992; Yang et al. 1996; Le Dimet et al. 1997).

Following Courtier et al. (1994) we consider methods for estimating the Hessian in the weakly nonlinear problem when the tangent linear dynamics is a good approximation to nonlinear dynamics. As a consequence the cost function is near to being quadratic. If as Gauthier and Courtier (1992) we consider the observations as random variables and we look at variational analysis as attempting to solve the minimization problem

$$
\min J(v) = \frac{1}{2} (x - x_b)^T B^{-1} (x - x_b) + \frac{1}{2} (Hx - y)^T O^{-1} (Hx - y)
$$

where x_b is the unbiased background field and y the set of unbiased observations, both being realizations of random variables of covariances B and O respectively and where the operator H computes the model equivalent Hx of the observation y. Then the Hessian J'' of the cost function J at the minimum is given by

$$
J'' = B^{-1} + H^T O^{-1} H
$$

obtained by differentiating (141) twice.

Moreover the analysis error covariance matrix is the inverse of the Hessian as shown in Appendix B of Rabier and Courtier (1992). Calling x_a the result of the minimization (i.e. the analysis) and x_t the truth, one has

$$
E \left[(x_a - x_t)(x_a - x_t)^T \right] = (J'')^{-1} = (B^{-1} + H^T O^{-1} H)^{-1}
$$

A requirement is that the background error and the observation error are uncorrelated (Rabier and Courtier 1992; Fisher and Courtier 1995). See also work of Thepaut and Moll (1990) pointing out that the diagonal of the Hessian is optimal among all diagonal preconditioners.
20 Hessian Singular Vectors (HSV)

Computing HSV’s uses the full Hessian of the cost function in the variational data assimilation which can be viewed as an approximation of the inverse of the analysis error covariance matrix and it is used at initial time to define a norm. The total energy norm is still used at optimization time. See work by Barkmeijer et al. (1998, 1999). The HSV’s are consistent with the 3-D VAR estimates of the analysis error statistics. In practice one never knows the full 3-D VAR Hessian in its matrix form and a generalized eigenvalue problem has to be solved as described below.

The HSV’s are also used in a method first proposed by Courtier et al. (1993) and tested by Rabier et al. (1997) for the development of a simplified Kalman filter fully described by Fisher (1998) and compared with a low resolution explicit extended Kalman filter by Ehrendorfer and Bouttier (1998). See also Buizza and Palmer (1995).

Let M be the propagator of the tangent linear model, P a projection operator setting a vector to zero outside a given domain. Consider positive-definite and symmetric operators including a norm at initial and optimization time respectively. Then the SV’s defined by

$$< P\epsilon(t), EP\epsilon(t) >$$
$$< \epsilon(t_0), C\epsilon(t_0) >$$

under an Euclidean norm are solution of generalized eigenvalue problem.

$$M^*P^*EPMx = \lambda Cx$$

In HSV, the operator C is equal to the Hessian of the 3-D Var cost function. As suggested by Barkmeijer et al. (1998), one can solve (145) by using the generalized eigenvalue algorithm (Davidson 1975). See also Sleijpen and Van der Vorst (1996). Using

$$C = \nabla^2 J = B^{-1} + H^T O^{-1} H$$

and carrying out a coordinate transformation

$$x = L^{-1}x, L^{-1}L = B$$

Then we obtain a transformed operator

$$(L^{-1})^T CL$$

and the Hessian becomes equal to the sum of identity and a matrix with rank less or equal to the dimensions of the vector of observations (Fisher and Courtier 1995).

Veerse (1999) proposes to take advantage of this form of the appropriate Hessian in order to obtain approximations of the inverse analysis error covariance matrix, using the limited memory inverse BFGS minimization algorithm.

Let H be $(\nabla^2 J)^{-1}$ the inverse Hessian and H^+ the updated version of the inverse Hessian.
\[s = x^{n+1} - x^n \]
(149)

where \(s \) is the difference between the new iterate and the previous one in a limited-memory quasi-Newton minimization procedure.

\[y = g^{n+1} - g^n \]
(150)

is the corresponding gradient increment. One has the formula

\[H^+ = U(H, y, s) = \left(I - \frac{s \otimes y}{< y, s >} \right) \frac{s \otimes s}{< y, s >} \]
(151)

where \(<,>\) is a scalar product with respect to which the gradient is defined and \(\otimes \) stands for the outer product.

The method is implemented by using the inverse Hessian matrix-vector product built in the minimization code and based on Nocedal’s (1980) algorithm. These methods are useful when the second order adjoint method is not available due to either memory or CPU limitations.

21 4-D VAR Status Today

4-D VAR data assimilation is available and implemented today at several operational numerical weather prediction centers starting with European Centre for Medium-Range Weather Forecasts (ECMWF), (Rabier et al. 2000; Klinker et al. 2000) while a similar system was operational at Meteo-France in 2000 (Janiskova et al. 1999; Gauthier and Thepaut 2001; Desroziers et al. 2003). More recently 4-D VAR was implemented at UK Met office, Japan and Canada.

Park and Zupanski (2003) survey the status and progress of the four-dimensional variational data assimilation with emphasis on application to prediction of meso-scale/storm-scale atmospheric phenomena. See also Zupanski and Zupanski et al. (2002)

The impact of adopting 4-D VAR was qualified as a substantial, resulting in an improvement in NWP quality and accuracy (see Rabier (2005) in special Issue of QJRMS 2005).

4-D VAR combined with improvement in error specifications and with a large increase in a variety of observations has led to improvements in NWP accuracy (Simmons and Hollingsworth 2002).

Hollingsworth et al. (2005) shows how observing system improvements led to improvements of forecast scores while Bouttier and Kelly (2001) show that the improvement of forecast scores for the southern hemisphere are due to satellite data.

Also, error statistics for different sources of observation constitutes an active field of research aimed mainly at obtaining better representation of the specific observation operators.
22 Recent Algorithmic Developments of Note for 4-D VAR

Following an idea of Derber, Courtier et al. (1994) proposed and developed the incremental 4-D VAR algorithm, where minimization is carried out at reduced resolution in the inner iteration and on a linear model. The 4-D VAR incremental algorithm minimizes the following cost function (Rabier 2005)

\[
J(\delta_{w0}) = \frac{1}{2} \delta_{w0}^T B^{-1} \delta_{w0} + \frac{1}{2} \sum_{i=1}^{N} (H_i \delta X_i - d_i)^T R_i^{-1} (H_i \delta X_i - d_i) \tag{152}
\]

with \(\delta_{w0} = s(X_0 - X_b) \).

Simplified increment at initial time \(t_0 \)

\[
d_i = y_i^o - H_i(X_i) \tag{153}
\]

is the observation increment at time \(t_i \). The solution resulting from minimization of the cost function is added to the background \(X_b \) to obtain analysis at \(t_0 \) i.e

\[
X_0^a = X^b - S^{-1} \delta_{w0} \tag{154}
\]

where \(S^{-1} \) is the generalized inverse of operator \(S \) which projects from high to low resolution (i.e. \(S^{-1} \) projects from low to high resolution). In an outer loop one updates the high resolution reference trajectory and observation departures. A refinement of the incremental 4-D VAR was proposed as a multi-incremental algorithm by Veerse and Thepaut (1998).

Physical parameterizations that have been modified to allow use in the linear models used in the incremental procedure were implemented by Janiskova et al. (2002), Lopez and Moreau (2005).

23 Impact of Observations

In view of high density of some observations horizontal thinning is performed on data sets, and optimal observation density is found by trial and error.

Another approach called “super-obbing”, i.e. it averages neighboring observations. A new advance concerns the information content of the data. While usual method of estimating data impact in a forecasting system consists in performing observing system experiments (OSE) which turn out computationally expensive. However, another diagnostic called the “degrees of freedom for signal (DFS)” has been used by Rodgers (2000), Fisher (2003a, 2003b) and Cardinali et al. (2004).

Given an analysis \(x_a \), background \(x_b \) and observation \(y^o \) we have

\[
x_a = x_b + (B^{-1} + H^T R^{-1} H)^{-1} H^T R^{-1} (y^o - H(x_b)) \tag{155}
\]

which can be written compactly as
\[x_a = x_b + Kd \]

(156)

\[B \text{-being the background error covariance matrix, } R \text{ the observation error covariance,} \]
\[H \text{-linearized observation operator of } H. K \text{ is called the Kalman gain matrix and } d \]
\[\text{innovation vector } d = y^o - H(x_b). \]

The DFS is defined as
\[DFS = Tr(HK) \]

(157)

where the trace of the matrix \(HK \) measures the gain in information due to the observations of how an assimilation system extracts information signal from the background. One way to calculate DFS is the use of estimation the Hessian of the cost function provided. Fisher (2003a, 2003b) and Cardinali et al. (2004) used estimation of Hessian of the cost function provided by the minimization algorithm. Chapnik et al. (2006) use evaluation of trace of the \(KH \) matrix, using a method put forward by Desroziers and Ivanov (2001) to evaluate trace of \(KH \).

Computing sensitivity of forecast to the observations can be carried out by considering the adjoint of data assimilation together with the adjoint of the forecast model. This allows use of adaptive observations which is a topic of increased research efforts in 4-D VAR data assimilation (Berliner et al. 1999; Baker and Daley 2000; Daescu and Navon 2004; Langland and Baker 2004).

24 Conclusions

A condensed review of several aspects of 4-D VAR as it evolved in the last 30 or so years is presented. It aims to present both the history of 4-D VAR as well as its evolution by highlighting several topics of its application.

No attempt was made to cover here the vast ensemble Kalman filter data assimilation and its various flavors due to space and time limitations. In the same vein this review is not exhaustive as it is not covering all the issues dealing with 4-D VAR applications.

It has become amply evident that in the last 15 years major improvements in NWP are due to large extent to development of sources of observations and that 4-D VAR and sequential data assimilation can take advantage of them due to major research efforts at universities, federal laboratories and operational centers.

For new opportunities for research see the article by McLaughlin et al. (2005) that illuminates and outlines possibilities for enhanced collaboration within the data assimilation community.

It is certain that data assimilation concepts will become widely applied in all the geosciences as more geoscience scientific disciplines gain access to larger amounts of data, from satellite remote sensing and from sensor networks, and as Earth system models increase in both accuracy and sophistication.
It is hoped that this review highlights several aspects of 4-D VAR data assimilation and serves to attract interest of both atmospheric science practitioners as well as real time PDE constrained optimization research scientists.

Acknowledgements Prof. I.M. Navon would like to acknowledge the support of NSF grants ATM-0201808 and CCF-0635162.

References

Akella S, Navon IM (2007) Different approaches to model error formulation in 4D-Var: a study with high resolution advection schemes. In revision process with Tellus

Courtier P (1985) Experiments in data assimilation using the adjoint model technique. Workshop on High-Resolution Analysis ECMWF (UK) June
Data Assimilation for Numerical Weather Prediction

Eliassen A (1954) Provisional report on calculation of spatial covariance and autocorrelation of the pressure field, Report # 5. Institute of Weather and Climate Res, Academy of Science, Oslo, p 11

Fisher M (2003a) Background error covariance modelling M Fisher seminar, Recent developments in data assimilation for atmosphere and ocean. 8–12 September European Centre for Medium-Range Weather Forecasts

Gauss CF (1809) Theoria motus corporum coelestium in sectionibus conicis solem ambientum Book 2, Section 2, pp 205–224. English translation by Ch. Davis, reprinted 1963 by Dover, New York, p 142

Griffith AK (1997) Data assimilation for numerical weather prediction using control theory. The University of Reading, Department of Mathematics, PhD Thesis
Gunzburger MD (2003) Perspectives in flow control and optimization. Advances in design and control. SIAM, Philadelphia, USA

Lewins J (1965) Importance, the Adjoint Function., Pergamon Press, Oxford

Marchuk GI (1958) Numerical calculation of nuclear reactors. Atomizdat, Moskwa, p 162

enstrophy and mass in discretized shallow-water equations models. Mon Wea Rev 109:946–958
Navon IM, De Villiers RD (1983) Combined penalty multiplier optimization methods to enforce
integral invariants conservation. Mon Wea Rev 111:1228–1243
YK (ed) Festive volume of the international symposium on variational methods in geosciences.
Navon IM (1987) The Bayliss-I Isaacson algorithm and the constraint restoration method are equiva-
Corliss G (eds) Proceedings of the international conference on automatic differentiation of
algorithms: Theory, Implementation and Application. SIAM, Philadelphia, PA
entific Publishing Co, Singapore, 1232, p 33–48
Navon IM et al (1992a) Variational data assimilation with an adiabatic version of the NMC spectral
model. Mon Wea Rev 122:1433–1446
Navon IM et al (1992b) Testing for reliability and robustness of optimization codes for large scale
Navon IM et al (2005) The impact of background error on incomplete observations for 4D-Var
data assimilation with the FSU GSM. In: Sunderam VS et al (eds) Computational Science-
tory, University Joseph Fourier, Grenoble, France, p 213
Nichols NK (2003) Treating model error in 3-D and 4-D data assimilation. Proceedings of the
NATO Advanced Study Institute on Data Assimilation for the Earth System, Maratea, Italy
Oblow EM (1983) An automated procedure for sensitivity analysis using computer calculus, Tech
Report ORNL/TM-8776, ORNL
Park SK, Kalnay E (1999) Application of the quasi-inverse method to storm-scale data assim-
ilation. Abstracts, 5th SIAM Conference on Mathematical and Computational Issues in the
Geosciences, 24–27 March, San Antonio, Texas, SIAM, 104
Park SK, Zupanski D (2003) Four-dimensional variational data assimilation for mesoscale and
storm-scale applications. Meteor Atmos Phys 82:173–208
Park SK, Kalnay E (2004) Inverse three-dimensional variational data assimilation for an advection-
Parrish DF, Derber JC (1992) The National-Meteorological-Centers’ spectral statistical-
interpolation analysis system. Mon Wea Rev 120 (8):1747–1763
Penenko V, Obratsov NN (1976) A variational initialization method for the fields of the meteor-
ological elements. Meteorol Gidrol 11:1–11
Pin et al (1987) ADGEN: An automated adjoint code generator for large-scale sensitivity analysis,
New York
Pu ZX et al (1997) Sensitivity of forecast errors to initial conditions with a quasi-inverse linear
Pu ZX, Kalnay E (1999) Targeting observations with the quasi-inverse linear and adjoint NCEP
global models: Performance during FASTEX. Q J R Meteor Soc 125 (561):3329–3337
Data Assimilation for Numerical Weather Prediction

Saha S (1992) Response of the NMC MRF model to systematic error correction within the integration. Mon Wea Rev 120:345–360
I.M. Navon

Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications
PARK, S.K.; Xu, L. (Eds.)
2009, XVIII, 476 p. 670 illus., 54 illus. in color., Hardcover
ISBN: 978-3-540-71055-4